Если 2 стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника то эти треугольники равны.
Дано: треугольник АВС и треугольник А1 В1 С1
АВ=А1 В1
ВС=В1С1
угол 1=углу 2
Доказать: что треугольник АВС=треугольнику А1 В1 С1
Доказательство:
рассмотрим два треугольника т.к АВ=А1 В1
Вс= В1 С1 (по усл.)
угол 1 равен углу 2
следовательно что треугольник АВС=треугольнику
А1 В1 С1
ответ:
Объяснение: РАВС - правильная треугольная пирамида, АВ=12 , РН=8, А₁В₁С₁║АВС .
АСВ – правильный треугольник, Н – центр данного треугольника (центр вписанной и описанной окружностей). РМ – апофема заданной пирамиды. ММ₁ – апофема усеченной пирамиды. Согласно свойству параллельных плоскостей (две параллельные плоскости пересекают любую третью плоскость так, что линии пересечения параллельны), имеем несколько пар подобных треугольников с равным коэффициентом подобия. В частности
Найдём НМ - радиус вписанной окружности в правильный треугольник:
Рассм. ΔРНМ: