На стороне ab угла bac отмечена точка e так что ae=10 см а на стороне ac отмечена точка d так что ad-16 см.подобны ли треугольники abd и aec если eb=22 см а ac=20 см? !
1) так. Есть форума такая, мало кому известная. Высота, проведенная из вершины прямого угла, равна среднему геометрическому проекций катетов на гипотенузу. Звучит страшно, но это не так. Рисунок приложу. h=sqrt 2*8= 4 Теперь ищем площадь: S=1/2*h*c=1/2*4*10=20 sqrt-корень с-гипотенуза 2) Тангенс по определению отношение катетов. Там дробь, но она сокращена. По теореме Пифагора. Сумма квадратов катетов равна квадрату гипотенузы. Чтобы получилось 51^2 8 и 15 - мало 16 и 25 - мало 24 и 45 - как раз. 24^2+45^2=51^2 576+2025=2601 ответ: 24 и 45
Проведем диаметр и обозначим его AC . Проведем хорду и обозначим её BN. Точку пересечения хорды с диаметром обозначим буквой O.Соединим точку В хорды с концами диаметра А и В. У нас получилось два прямоугольных треугольника. AOB. и BOC. Примем отрезок АО =9см, а отрезок ОС=x. Тогда АС =9+x(это диаметр). Из треугольника АВС находим. ВС^2=АС^2-АВ^2: Из треугольника. ВОС ВС^2=ОВ^2+ОС^2 : Левые части равны значит АС^2 -АВ^2=ОВ^2+ОС^2. Подставляя значения получаем: (9+x)^2-(9^2+12^2)=12^2+x^2; 81+18x+x^2- 81 -144=144+x^2: 18x=288, x=16. AC =9+16=25. Радиус равняется АС/2=25/2 =12,5(см) ответ:12,5.
AB=AE+EB =10+22 =32
AB/AC= 32/20 = 8/5
AD/AE= 16/10 = 8/5
Треугольники ABD и ACE подобны по двум пропорциональным сторонам и углу между ними.