∠CDE составляет одну часть, ∠ADE - 8 таких частей, всего 9 частей.
∠CDE = 90° : 9 = 10°
Сумма острых углов прямоугольного треугольника 90°, тогда из ΔCDE:
∠DCE = 90° - ∠CDE = 90° - 10° = 80°
Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда ΔCOD равнобедренный (CO = OD), значит углы при его основании равны:
∠OCD = ∠ODC = 80°.
В ΔOCD находим третий угол:
∠COD = 180° - (∠OCD + ∠ODC) = 180° - 160° = 20° - угол между диагоналями.
Объяснение:
Подпишись на меня в ютубе мой канал. LIXORADKA 43. Буду тебя там ждать)
∠CDE составляет одну часть, ∠ADE - 8 таких частей, всего 9 частей.
∠CDE = 90° : 9 = 10°
Сумма острых углов прямоугольного треугольника 90°, тогда из ΔCDE:
∠DCE = 90° - ∠CDE = 90° - 10° = 80°
Диагонали прямоугольника равны и точкой пересечения делятся пополам, тогда ΔCOD равнобедренный (CO = OD), значит углы при его основании равны:
∠OCD = ∠ODC = 80°.
В ΔOCD находим третий угол:
∠COD = 180° - (∠OCD + ∠ODC) = 180° - 160° = 20° - угол между диагоналями.
Объяснение:
Подпишись на меня в ютубе мой канал. LIXORADKA 43. Буду тебя там ждать)
Итак, будем доказывать тот факт, что треугольники равны.
Пусть будет так, что A1B2C2- треугольник, равный треугольнику ABC, с вершиной B2 на луче A1B1 и вершиной C2 в той же полуплоскости как бы относительно прямой A1B1, где будет у нас находиться вершина C1.
Так как A1B2=A1B1, то вершина B2 совпадает с вершиной B1, это очевидно. Так как угол B1A1C2= углу B1A1C1 и тогда угол A1B1C2 = углу A1B1C1, то луч A1C2 будет совпадать с лучом A1C1, а луч B1C2 совпадает с лучом B1C1. Отсюда следует, что вершина C2 совпадает с вершиной C1...
Итак, треугольник A1B1C1 совпадает с треугольником A1B2C2, а как раз и значит,что он равен треугольнику ABC.
Теорема доказана.
Вот в прикреплённом файле есть мои чертежи по доказательству: