Геометрические фигуры в архитектуре Ни один из видов искусств так тесно не связан с геометрией как архитектура. Ле Корбюзье считал геометрию тем замечательным инструментом, который позволяет установить порядок в пространстве. Фигуры, которые он упоминает, являются теми математическими моделями, на базе которых строятся архитектурные формы. Чаще всего в архитектурном сооружении сочетаются различные геометрические фигуры. Например, в башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. Конечно, можно говорить о соответствии архитектурных форм указанным геометрическим только приближенно, отвлекаясь от мелких деталей.
4. Назовём медиану, проведённую из точки B, BD. Медианы в треугольнике делят друг друга в отношении 2 : 1, считая от вершины, то есть BO : OD = 2 : 1
Так как прямые EF и AC параллельны, то ∠BAC = ∠BEF как соответственные углы.
Рассмотрим ΔABC и ΔEBF 1) ∠B - общий 2) ∠BAC = ∠BEF - из решения Отсюда следует, что эти треугольники подобны. Коэффициент подобия будет равен отношению BD и BO k = BD : BO = 3x : 2x = 3 : 2
Из подобия AC : EF = 3 : 2 15 : EF = 3 : 2 3EF = 30 EF = 10 см
ответ: 10 см
5. Найдём AB по теореме Пифагора: AB = √(25 + 75) = √100 = 10 см Напротив угла в 30° лежит катет в два раза меньше гипотенузы. AB = 2AC ⇒ ∠ABC = 30°
Объяснение:
ΔABC-равнобедренный
AB=BC=6см
cosB=√3/2⇒∠B=30°
SΔABC=1/2AB*BC*sinB=1/2*6*6*1/2=9(см²)