Задача 1. Против угла 30° (ЕВС) лежит половина гипотенузы, значит гепотенуза прямоугольного треугольника ЕВС, равна ЕВ=7*2=14. ответ ЕВ) 14.
2 Задача. Угл КРЕ=30° (180-150) , против угла в 30° лежит половина гипотенузы => РЕ=9*2=18. Угл СКЕ=30° (сумма углов 180°-90-60) , против угла в 30 градусов лежит половина гепотенузы=> СЕ 4.5 (9/2). Мы нашли РЕ=18 и СЕ=4.5, можем найти РС= РЕ-СЕ= 18-4.5=13.5.
ответ: РС=13.5. СЕ=4.5
Объяснение:
По основному свойству прямоугольного треугольника: против угла в 30° лежит половина гипотенузы.
1. ∠B = 80°, ∠C = 30°.
Теорема. Сумма углов любого Δ равна 180°.
Тогда ∠A + ∠B + ∠C = 180°,
∠A + 80° + 30° = 180°,
∠A = 180° - 80° - 30° = 70°.
Теорема. Против большего угла в треугольнике лежит большая сторона.
Против ∠A лежит сторона BC.
Против ∠B лежит сторона AC.
Против ∠C лежит сторона AB.
∠A = 70°, ∠B = 80°, ∠C = 30°, поэтому
AC > AB, AC > BC, и BC > AB, то есть
AB < BC < AC.
2. Треугольник существует, если выполнено неравенство треугольника: длина наибольшей стороны должна быть меньше суммы длин двух других сторон.
10м < 5м + 8м = 13м,
10м < 13м.
Итак, неравенство треугольника выполнено и треугольник со сторонами 5м, 8м и 10м существует.
дан треугольник авс, точка е принадлежит ае, точка к принадлежит вс.
ве: ва = вк: вс = 2: 5. через прямую ас проходит плоскость альфа, не с плоскостью треугольника авс.
а) доказать, что ек параллельна плоскости альфа.
б) найти ас, если ек=14