Отметим ромб буквами - левая верщина А, сверху В, справа С и внизу D.
Тогда треугольник АВС равнобедренный, т.к. это ромб, в котором все стороны равны. Значит, если угол ВАС = 32 градуса, то и угол ВСА = 32 градуса. Тогда в треугольнике ВОС (он кстати прямоугольный, т.к. диагонали ромба пересекаются под прямым углом) у нас уже есть два угла - угол ВОС = 90 градусов, угол ВСА = 32 градусам. Т.к. сумма углов в любом треугольнике равна 180 градусов, то в нашем треугольнике ВОС угол СВО = 180 - (90 + 32) = 180 - 122 = 58 градусов
Координаты середины отрезка АВ: ((-3+(-5))/2=-4; (1+7)/2=4; (6+0)/2=3) =
= (-4;4;3).