Пусть общая хорда AB , O₁ и O₂ центры окружностей ;O₁A=O₂A =r ,O₁O₂ =r. --- O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r. AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ? Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
№1 Сумма углов треугольника равна 180 градусов.сумма двух данных углов равна 107+23=130 градусов.следовательно третий угол равен 180-130=70 градусов. №2 Обозначим боковую сторону через Х тогда основание будет Х+12. составляем уравнение Х+Х+(Х+12)=45, 3Х=33,Х=11 Боковая сторона равна 11см,основание равно 23см №3 Углы ANDиCND вертикальные,а значит равны по 104 градуса. Угол ANC смежный с углом AND.Сумма смежных углов равна 180 градусов,тогда угол ANC=180-104=76 №4 Т.к. боковая сторона в 2 раза больше высоты,тоугол,лежащий напротив высоты равен 30 градусов,а это угол при основании равнобедренного треугольника.тогда угол при вершине треугольника равен 180-(30+30)=120 градусов
---
O₁O₂ ⊥ AB. ΔO₁A O₂ (также ΔO₁BO₂) равносторонние со стороной r.
AB= 2*(r√3)/2)⇒r =(AB√3)/3 .
Пусть AB и CD взаимно перпендикулярные хорды (AB ⊥ CD) , P_точка пересечения этих хорд ( P=[AB] ⋂[CD] ) b AP= DP =10 ; BP =CP =16 см.
R - ?
Например , из ΔACD: AC/sin∠ADC =2R ⇒R =AC/2sin∠ADC.
ΔAPC =ΔBPD (по катетам ) ⇒AC =DB =√(10² +16²) =2√(5² +8²) =2√89 (см).
ΔAPD равнобедренный прямоугольный треугольник
⇒∠ADP || ∠ADC|| =∠DAP=45° .
Следовательно :
R =AC/2sin∠ADC =AC/2sin45° =(2√89)/(2*1/√2) =√178 (см).