Диагонали, пересекаясь, образуют треугольник с углами 90, 60 и 30 градусов. В таком треугольнике меньший катет (половина меьшей диагонали ромба) равен половине гипотенузы (стороне ромба), то есть равна 10. Тогда вся меньшая диагональ равна 10*2=20.
Если разделить ромб наименьшей диагональю, то получится два равнобедренных треугольника, так как все стороны у ромба равны. Угол 60° разделится по полам, так бессектриса является и высотой и медианой (в ромбе диагонали перпендикулярны, а равнобедренном труголнике высота является и бессектрисой, и медианой. Получился прямоугольный треугольник с углом 30°. Напротив него лежит катет равный половине гипотенузы. Катет является половиной меньшей диагонали (диагонали в ромбе при пересечении делятся по полам). Гипотенуза равна 8, значит катет равен 4. Из этого выходит, что меньшая диагональ равна 8. P.S Не забудь сделать мой ответ лучшим. Удачи тебе.
Пусть дан треугольник ABC, углы А, B, C, стороны a, b, c;
Теорема синусов: a/sinA = b/sinB = c/sinC
Теорема косинусов: a^2 = b^2 + c^2 - 2*b*c*cosA; (ну и также для остальных углов) (короче, похожа на теорему Пифагора, только обобщённую на произвольный треугольник).
Ну вот. Пусть те стороны равны 3х и 8х. Тогда пиши теорему косинусов: 441= 9*х^2+64*x^2-48*x^2*0,5=49*x^2; x^2 = 9 =>x=3. Тогда две другие стороны равны 9 и 24 соответственно. Далее по теореме синусов можно было бы найти углы - но этого не требуется.
Пусть дан треугольник ABC, углы А, B, C, стороны a, b, c;
Теорема синусов: a/sinA = b/sinB = c/sinC
Теорема косинусов: a^2 = b^2 + c^2 - 2*b*c*cosA; (ну и также для остальных углов) (короче, похожа на теорему Пифагора, только обобщённую на произвольный треугольник).
Ну вот. Пусть те стороны равны 3х и 8х. Тогда пиши теорему косинусов: 441= 9*х^2+64*x^2-48*x^2*0,5=49*x^2; x^2 = 9 =>x=3. Тогда две другие стороны равны 9 и 24 соответственно. Далее по теореме синусов можно было бы найти углы - но этого не требуется.