Площадь боковой поверхности пирамиды – сумма площадей боковых граней.
В правильной пирамиде все боковые грани рввны и являются равнобедренными треугольниками, а высота боковой грани называется апофемой.
S (грани)=a•h:2
S=8•10:2=40 см²
Таких граней три.
S=40•3=120 см²
--------
Или: Площадь боковой поверхности правильной пирамиды равна произведению апофемы на полупериметр основания
S=h•(a•3:2)=10•8•3:2=120 см²
---------
Примечание:
В правильном многоугольнике тоже есть апофема - так называется отрезок (а также его длина) перпендикуляра, опущенного из центра правильного многоугольника на любую из его сторон.
Большая диагональ Д ромба равна:
Д = 2*(L/2)*tg(β/2) = L*tg(β/2).
Высота призмы Н равна: Н = Д*tgα = L*tg(β/2)*tgα.
Площадь боковой поверхности Sбок = РН = (2L/(cos(β/2)))*( L*tg(β/2)*tgα) = 2L²*tg(β/2)*tgα/(cos(β/2)).