Подобные треугольники- треугольники, у которых все углы подобные, а стороны одного соответственно пропорциональны сторонам другого треугольника. 1)Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны. 2)Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны. 3)Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
Проведём высоту из большего угла параллелограмма 1)Т.к. меньший угол равен 30° и из большего угла проведена высота то по св - ву прямоугольная треугольника получаем что высота равна 15 см. S=a×huge S= 52×15=780см 2) Т.к дерево и человек стоят перпендекулярно дороге и угол падения тени дерево и человека равно то треугольники подобны (большой треугольник от дерева до тени человека, маленький от чельвека до своего тени). Т.к. треугольники подобны то составиможно пропорции Дерево/человек= тень дерева+ тень человека/тень человека Дерево=5×1,75=8,75м
Отрезки пересечения этой проведенной плокости с боковыми гранями пирамиды - это средние линии треугольников, образующих боковые ребра пирамиды. Значит эти отрезки параллельны ребрам основания пирамиды. По теореме о том, что если две пересекающиеся прямые одной плоскости параллельны двум перескающимся прямым другой плоскости, то такие плосоксти параллельных, получаем требуемое утверждение. Полученный в сечении треугольник подобен треугольнику, лежащему в основании пирамиды с коэффициентом подобия 1/2. Т.е. его площадь в 4 раза меньше площади основания, т.е. равна 16.
1)Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
2)Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, заключенные между этими сторонами, равны, то такие треугольники подобны.
3)Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.