Наиболее очевидный частный случай, если трапеция равнобедренная. решения для этого случая выше. рассмотрим вариант с прямоугольной трапецией. пусть высота (она же одна из сторон) равна х, вторая сторона у. тогда периметр х+у+9+15=34 => х+у=10 теперь рассмотрим треугольник, который образует сторона, не образующая прямой угол с основанием, высота опущенная из точки пересечения этой стороны с малым основанием на большое основание и отрезок между этой высотой и и точкой пересечения этой стороны с большим основанием (треугольник cdh, см рисунок). hd=ad-ah, т. к. ан=вс=9, а ad=15, то hd=15-9=6 по теореме пифагора: cd^2=ch^2+hd^2 или cd^2-ch^2=hd^2 т. е. у^2-x^2=36 решаем систему уравнений: { х+у=10 {у^2-x^2=36 например, таким способом: домножаем первое уравнение на (х-у) и складываем его со вторым. получаем уравнение: 10(х-у) -36=0, откуда х-у=3,6. складывая его с первым уравнением, получаем 2х=13,6 т. о. х=6,8 s=((a+b)/2)*h а=9; b=15; h=x=6,8 s=((9+15)/2)*6.8=81.6
4 точки не лежат на одной плоскости. Это значит, через них нельзя провести плоскость. Если прямая соединяет две любые точки, то другая прямая, соединяющая другие две точки обязана быть скрещивающейся, так как в противном случае через эти две прямые можно было бы провести плоскость и 4 точки лежали бы в одной плоскости. То есть, если прямая соединяет две точки, то прямая, соединяющая другие две точки будет с ней скрещивающейся.
Итак, ответ - для АВ скрещивающаяся - СD, для DC - АВ. Впрочем, это одна и та же пара. В этой задаче есть еще одна пара скрещивающихся прямых. ВС скрещивается с АD.