Окружность задана уравнением : (x+2)^2+y^2=9 а) окружность центра и радиус. б)принадлежат ли данной окружности точки а (-2; 3),в(2; 3),с(1; 0) ? в)напишите уравнение прямой ав
А) Параметры окружности получаем из её уравнения: - координаты центра (-1; 0), - радиус равен √9 = 3.
б) принадлежат ли данной окружности точки А (-2;3),В(2;3),С(1;0) ? Для этого надо подставить координаты точек в уравнение окружности и проверить - соблюдается ли равенство (x+2)^2+y^2=9. А: (-2+2)²+3² = 0+9 = 9 принадлежит. В: (2+2)²+3² = 16+9 = 25 ≠ 9 не принадлежит. С: (1+2)²+0² = 9 принадлежит.
в) АВ:(х+2)/4 = (у-3)/0. Так как координаты точек А и В по оси у равны между собой, то прямая АВ параллельна оси Ох и её уравнение у = 3.
Теорема о сумме углов треугольника — классическая теорема евклидовой . утверждает, что сумма углов треугольника на евклидовой плоскости равна 180°. из теоремы следует, что у любого треугольника не меньше двух острых углов. действительно, применяя доказательство от противного, допустим, что у треугольника только один острый угол или вообще нет острых углов. тогда у этого треугольника есть, по крайней мере, два угла, каждый из которых не меньше 90°. сумма этих углов не меньше 180°. а это невозможно, так как сумма всех углов треугольника равна 180°. доказательство пусть {\displaystyle \delta abc} — произвольный треугольник. проведём через вершину bпрямую, параллельную прямой ac. отметим на ней точку d так, чтобы точки aи d лежали по разные стороны от прямой bc. углы dbc и acb равны как внутренние накрест лежащие, образованные секущей bc с параллельными прямыми ac и bd. поэтому сумма углов треугольника при вершинах b и с равна углу abd. сумма всех трёх углов треугольника равна сумме углов abd и bac. так как эти углы внутренние односторонние для параллельных ac и bd при секущей ab, то их сумма равна 180°. что и требовалось доказать.
- координаты центра (-1; 0),
- радиус равен √9 = 3.
б) принадлежат ли данной окружности точки А (-2;3),В(2;3),С(1;0) ?
Для этого надо подставить координаты точек в уравнение окружности и проверить - соблюдается ли равенство (x+2)^2+y^2=9.
А: (-2+2)²+3² = 0+9 = 9 принадлежит.
В: (2+2)²+3² = 16+9 = 25 ≠ 9 не принадлежит.
С: (1+2)²+0² = 9 принадлежит.
в) АВ:(х+2)/4 = (у-3)/0.
Так как координаты точек А и В по оси у равны между собой, то прямая АВ параллельна оси Ох и её уравнение у = 3.