Медиана, опущенная на основание, в равнобедренном треугольнике, является высотой и биссектрисой (рисунок 1) По теореме Пифагора находим AB: AB² = AH²+BH² = 160²+40²=27200 AB = 40√17
Рисунок 2. На луче AO отложим отрезок OD, OD=AO. Соединим точку D с точками B и C. Рассмотрим четырехугольник ABDC. BO=CO (так как AO — медиана треугольника ABC); AO=DO (по построению). Так как диагонали четырехугольника ABDC в точке пересечения делятся пополам, то ABDC — параллелограмм. По свойству диагоналей параллелограмма AD²+BC²=2*(AB²+AC²) AD²+(40√17)²=2*((40√17)²+80²) AD²=2*(27200+6400)-27200 AD²=40000 AD = 200 AO = AD/2 = 200/2 = 100
Медианы AO и CO1 равны (рисунок 3). т.е. AO = CO1 = 100
Треугольник АВС, АВ=ВС, уголА=уголС, АК-медиана=6 на ВС, уголКАС=15, проводим медиану СМ на АВ, медианы в равнобедренном треугольнике, проведенные к боковым сторонам равны, АК=СМ=6, пересечение медиан - точка О, медианы при пересечении делятся в отношении 2/1 начиная от вершины, АК=3 части, 1 часть=АК/3=6/3=2=ОК=ОМ, АО=СО=4, треугольник АОС равнобедренный, уголКАС=уголАСМ=15, уголАОС=180-15-15=150, АС в квадрате=АО в квадрате+СО в квадрате-2*АО*СО*cos150=16+16-2*4*4*(-корень3/2)=16*(2+корень3), АС=4*корень(2+корень3), отдельно приведем корень(2+корень3) = корень((2+корень(2*2-3))/2)+корень((2-корень(2*2-3))/2)=корень(3/2)+корень(1/2), АС=4*((корень(3/2)+корень(1/2))=корень(16*3/2)+корень(16/2)=корень24+корень8=2*(корень6+корень2)=2*корень2*(корень3+1), площадь треугольника КАС=1/2*АК*АС*sin15=1/2*6*2*корень2*(корень3+1)*sin15, отдельно рассматриваем sin15=sin(45-30)=sin45*cos30-cos45*sin30=((корень2/2)*(корень3/2))-((корень2/2)*(1/2))=(корень2/4)*(корень3-1), площадь КАС=1/2*6*2*корень2*(корень3+1)*(корень2/4)*(корень3-1)=3*(3-1)=6, медиана делит треугольник на два равновеликих треугольника, площадь КАС=площадьАВК=1/2площадьАВС, площадь АВС=2*площадь КАС=2*6=12