Пирамида SABCD пересечена плоскостью KLNM, параллельной основанию.
1. Каково взаимное расположение прямых (пересекаются, скрещиваются, параллельны):
а) AS и CD? ответ: скрещиваются, т.к. CD∈( ADC) , AS∩( ADC) =A , A∉CD
б) AB и KL? ответ: параллельны , т.к. (KLN)||(АВС).
в) CD и LM? ответ: скрещиваются, т.к.CD∈(CDM) , а LM пересекает эту плоскость в точке М , не лежащей на CD.
2. Как расположены плоскости:
а) ASB и DSC? ответ: пересекаются ,т.к. имеют общую точку
б) ABD и ASD? ответ: пересекаются ,т.к имеют общую прямую.
Смотрите, что надо сделать, чтобы решение само по себе возникло:)))
Пусть треугольник АВС, АС - основание, АВ = ВС;
Ясно, что если внешний угол 60, то внутренний 120, и это угол при вершине, а углы при основании равны 60/2 = 30 градусов.
(Не может быть 120 - угол при основании :))- это я так, на всякий случай.)
Продлите сторону СВ за вершину В, и из точки А проведите перпендикуляр к этой прямой. Пусть точка пересечения К. Тогда треугольник КАС - прямоугольный, в нем известен острый угол КСА = 30 градусов, и катет АК = 17 :))) А найти надо гипотенузу АС. Поэтому ответ 34 :)))