Сделаем рисунок и соединим вершины С и D данных треугольников. Обозначим точку пересечения CD с АВ буквой Н. Рассмотрим ∆ CAD и ∆ CBD АС=СВ и AD=BD по условию; сторона СD- общая. ∆ CAD = ∆ CBD по 3-му признаку равенства треугольников. Тогда ∠АСD=∠BCD; ∠CDA=∠CDB. СD- биссектриса углов при вершинах С и D равнобедренных треугольников. По свойству равнобедренных треугольников биссектриса, проведенная к основанию, является еще и высотой и медианой. ⇒ СН и DН - медианы этих треугольников, а поскольку у них общее основание АВ, то CD проходит через середину АВ, ч.т.д.
Сделаем рисунок и соединим вершины С и D данных треугольников. Обозначим точку пересечения CD с АВ буквой Н. Рассмотрим ∆ CAD и ∆ CBD АС=СВ и AD=BD по условию; сторона СD- общая. ∆ CAD = ∆ CBD по 3-му признаку равенства треугольников. Тогда ∠АСD=∠BCD; ∠CDA=∠CDB. СD- биссектриса углов при вершинах С и D равнобедренных треугольников. По свойству равнобедренных треугольников биссектриса, проведенная к основанию, является еще и высотой и медианой. ⇒ СН и DН - медианы этих треугольников, а поскольку у них общее основание АВ, то CD проходит через середину АВ, ч.т.д.
По теореме синусов в ∆ АЕС АЕsin∠С=АС:sin∠АЕC. Сумма углов треугольника 180°. Из ∆ АВС угол С=180°-(α+ β). ∠АЕС=180°-γ. ⇒ m:sin(180°-α- β)=AC:sin(180°-γ), откуда АС=m•sin(180*-γ)/sin(180*-α-β)