В тр-ке АВС ∠С=90. ОК, ОМ, ОН - радиусы, проведённые к сторонам АВ, ВС и АС соответственно. АК=14.4 см, ВК=25.6 см. Тр-ки АОК и АОН равны по признакам подобия и общей стороне, значит АН=АК=14.4 см Точно так-же ВМ=ВК=25.6 см СН=СМ=R АС=АН+СН=14.4+R ВС=ВМ+СМ=25.6+R Площадь тр-ка АВС можно посчитать по двум формулам: 1) S=АК·КВ=14.4·25.6=368.64 см² - формула подходит при вписанной окружности в прямоугольный тр-ник. 2) S=АС·ВС/2 (14.4+R)(25.6+R)/2=368.64 R²+40R-368.64=0 R1≈-47.72 - отрицательное значение не подходит, R2≈7.72 см.
Вопрос задачи - найти величину двугранного угла. Двугранный угол измеряется величиной его линейного угла. На рисунке это угол между перпендикулярами АР и АМ, возведенными из точки А к линии пересечения плоскостей, т.е. к ребру КН этого угла. Угол между прямой АВ и плоскостью β - это угол ВАН, т.е. угол между ВА и ее проекцией АН на плоскость β. ВН ⊥ плоскости β, следовательно, ⊥ и прямой НМ, проведенной параллельно КН. Треугольник АВН - прямоугольный, угол НВА= 90º-30º=60º. ВН=АВ*sin 30º=(5:√3)*1/2=(5:√3)/2 Если плоскость α проходит через прямую a, параллельную плоскости β, и пересекает эту плоскость по прямой b, то b || a. ВС параллельна плоскости β, которая пересекает плоскость α по прямой КН ⇒ ВС и КН - параллельны. АР - общий перпендикуляр к ВС и КН, ⇒ треугольник АРВ - прямоугольный. АР=АВ*sin 60º=(5:√3)*√3):2=5/2 Из Р опустим перпендикуляр РМ на плоскость β РМ || ВН ⇒ РМ=ВН =(5:√3)/2 Треугольник РАМ - прямоугольный. АМ - проекция АР на плоскость β , АР⊥КН. По т. о трех перпендикулярах АМ ⊥ КН, ⇒ ∠ РАМ - линейный угол двугранного угла между плоскостями α и β. sin ∠РАМ = РМ:АР={(5:√3)/2 }:5/2=1/√3 =0,57735 ≈ 0,5774 По таблицам Брадиса это синус угла 35º16'