перейде точка À точка C. 2) на кут 120° протигодинникової стрілки. перейде точка E точкаB. 1088. Дано відрізок і точку O, яка ал. 214. йому не належить.
Äî § 21 ГЕОМЕТРІ ЕРЕТВОРЕ 1087. –правильний шестикутник (мал. 214). У якуточку при повороті навколо точки O: 1) на кут60° за годинниковою стрілкою перейде точкаÀ точка C 2) на кут 120° проти годинниковоїстрілки перейде точка E точка B 1088. Дано відрізок і точку O, яка ал. 214 йому не належить. Побудуйте відрізок A′B′, у якийперейде відрізок при повороті навколо точкиO: 1) на 90° проти годинникової стрілки 2) на 20° за годинник
Дано:
Окружность (О; r)
∠OBA = 30°
CA — касательная
Найти:
∠BAC — ?
1) Так как радиусы окружности равны, значит, две стороны треугольника ABO равны. ⇒ ΔABO равнобедренный (AO = OB).
У равнобедренного треугольника углы при основании равны, следовательно: ∠OBA = ∠OAB = 30°.
2) Касательная к окружности перпендикулярна радиусу, проведённому в точку касания, значит CA ⊥ OA. ∠OAC = 90°.
3) ∠BAC = ∠OAC - ∠OAB.
∠BAC = 90° - 30° = 60°.
ОТВЕТ: 60°
Быстрое решение (пояснения писать обязательно нужно):
1) ΔABO равнобедренный, так как радиусы окружности, составляющие стороны треугольника, равны (AO = OB). Следовательно, ∠OBA = ∠OAB = 30°.
По свойству касательной, CA ⊥ OA ⇒ ∠OAC = 90°. Значит:
2) ∠BAC = 90° - 30° = 60°
ОТВЕТ: 60°
треугольник - это равносторонний треугольник
Отсюда длины дуг АВ-ВС-АС равны
то есть длина окружности равна L = 3*2pi = 6*pi
L=2*pi*R = 6*pi
R=3