1 Правильный четырехугольник это квадрат.
Пусть сторонs квадрата равны а, a = 4.
А) Радиус вписанной окружности перпендикулярен одной из сторон квадрата в точке касания, и равен половине стороны квадрата, то есть
R = a/2 = 4/2 = 2 (см).
Б) Теперь найдем радиус окружности, описанной вокруг равностороннего треугольника, по формуле из общей формулы:
R = a*b*c/(4*S), где a, b, c – стороны произвольного треугольника, S – площадь треугольника.
Частный случай, когда треугольник равносторонний и, применяя теорему синусов:
R = b/(2*sin α), в равностороннем треугольнике все углы равны 60, b – сторона равностороннего (правильного) треугольника.
R = b/(2*sin 60), sin 60 = √3/2.
R = b/√3.
b = R*√3 = 2√3 (см).
2 а) Дуги АВ, ВС, СД и АД равны, значит АВСД - вписанный квадрат.
Длина окружности: С=4ВС=16π см.
С=2πR ⇒ R=C/2π=16π/2π=8 см - это ответ.
б) Диагональ квадрата - это диаметр окружности.
d=D=2R=16 см.
Искомые хорды равны сторонам квадрата: а=d/√2=16/√2=8√2.
АВ=ВС=СД=АД=8√2 см - это ответ.
1. Р(АВД) = (АВ + АД) + ВД = 8
Но (АВ+АД) = Р(АВСД) /2 = 6 см
Тогда: 6 + ВД = 8
ВД = 2 см
2. Проводя отрезки, соединяющие середины сторон , мы тем самым проводим средние линии параллельные диагоналям 4 -ника и равные их половинам. Тогда понятно, что будет получаться:
а) параллелограмм
б) ромб (т.к. у прям-ка диагонали равны)
в) прямоугольник (т.к. у ромба диагонали перпенд-ны)
г) квадрат (это и ромб и прямоугольник в одном лице).
3. Эти треугольники равны по первому признаку равенства - по двум сторонам и углу между ними.
Другие два треугольника по той же причине - также равны между собой.
Площадь равностороннего треугольника равна S = a²√3/4
S = 36√3/4см² = 9√3см².