ответ действительно номер 3, решается это все очень просто: есть неравенство вида x^2-0,1x<0, исследуем функцию: т.к. коэффициент при x^2 больше 0 -> ветви параболы направленны в верх, теперь найдем решения уравнения x^2-0.1x=0 - > x(x-0.1)=0 -> x=0 или x=0.1 ; и т.к ветви параболы направленны вверх , то все что лежит в промежутке (-inf ; 0) U (0.1 ; inf) (inf - бесконечность) ,будет строго больше 0 , а при корнях уравнения которое мы решили , получим что значение выражения 0 -> на промежутке (0;0,1) парабола ниже оси OX - > x^2-0,1x<0 при x ∈ (0;0,1)
Дано: AB =BC; BH ⊥ AC ; AK =KB ; L∈ окружности (B,C , K ).
док. ΔAKL равнобедренный
Окружность проходит через три точки K ,B и C (описанная около треугольника KBC) ее центр это точка пересечения средних перпендикуляров KB и BС . AB =BC ⇒∠ABH =∠CBH (высота BH одновременно и биссектриса ; свойство равнобедренного треугольника ) . ∠KBL =∠CBL , L∈ BH * * *∠KBL=∠ABH ,∠CBL=∠CBH * * * (дугаKL)/2 = (дугаCL)/2 ⇒ KL =CL( равные дуги _равные хорда) , но CL =AL , следовательно KL =AL т.е. треугольник AKL равнобедренный .