Обозначим треугольник АВС, угол С = 90 град., АС = 8 см, ВС = 6 см. Меньшая высота в треугольнике проведена к большей стороне. Самая большая сторона в прямоугольном треугольнике является гипотенузой. Найдем ее по теореме Пифагора. АВ = V(АС^2 + ВС^2) = V(8^2 + 6^2) = V(100) = 10 см. Из угла С проведем к гипотенузе высоту СD. Рассмотрим два треугольника : АВС и АDС. Они являются подобными, так как угол А у них общий и оба они прямоугольные. Из подобия запишем : ВС/АВ = СD/АС Отсюда СD = ВС*АС/АВ = 6*8/10 = 4,8 см.
Одна сторона прямоугольника равна х, х>0, вторая у, у>0. Площадь прямоугольника S = xy = 2 откуда y = 2/x. Рассмотрим функцию:
P(x)=2х+2у=2х+2*2/х=2х+4/х
Найдем производную этой функции, приравняем к нулю, получим критические точки
2-(4/х²)=0, откуда 4-2х²=0
х²≠0, х=±√2
Поскольку отрицательный корень x = -√2 не подходит по смыслу задачи, то берем критическую точку х=√2, разбиваем ею числовую ось и проверяем, какие знаки принимает производная на интервалах (0;√2);(√2;+∞)
(0)___-(√2)+
Производная функции при переходе через точку x = √2 меняет знак с минуса на плюс, поэтому х=√2 - точка минимума функции.
у=2/√2=√2
А наименьший периметр прямоугольника будет равен 4√2, если обе стороны равны √2, т.е. когда прямоугольник превратится в квадрат.