Отрезок 17 - есть длина радиуса окружности. Соединим вершины при основании с центром окружности. В полученном равнобедренном треугольнике (боковые стороны равны радиусам по построению) высота, совпадает с высотой заданного треугольника и равна 8. Она же является медианой, поэтому ее конец делит основание треугольника пополам. Рассмотрим прямоугольный треугольник, образованный высотой, радиусом и половиной основания. В нем нам известна гипотенуза (радиус) и один из катетов (высота). Найдем второй катет, т. е половину основания по теореме Пифагора. Он равен 15. Т.о. мы знаем высоту заданного треугольника 17+8=25 и основание 15*2=30. Легко находим площадь.
Пусть АBCD- прямоугольник
AC=13
AD=12
AB^2=AC^2-AD^2=169-144=25
AB=5
AB=CD=5
AD=BC=12