М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
VeraLife1
VeraLife1
16.06.2022 18:00 •  Геометрия

Площадь треугольника равна 20, а одна из его сторон равна 4.найдите высоту,опущенную на эту сторону

👇
Ответ:
irinazakharova1
irinazakharova1
16.06.2022
Площадь треугольника находится по формуле S = 1/2•a•h, где a - сторона треугольнике, h - высота, опушённая на эту сторону. Отсюда h = 2S/a
h = 2•20 см²/4см = 10 см.
ответ: 10 см.
4,6(59 оценок)
Ответ:
S = 1\2 * a * h = 20

a = 4
=>
h = 2 * S \ a = 2 * 20 \ 4 = 8 - высота
4,4(68 оценок)
Открыть все ответы
Ответ:
angelikasolnce
angelikasolnce
16.06.2022
В основании прямой призмы лежит прямоугольный треугольник с острым углом Альфа и гипотенузой с. Если диагональ боковой грани, которая содержит гипотенузу основания, наклонена к плоскости основания под углом Бета, то чему равен объем призмы?

РЕШЕНИЕ:

• Рассмотрим тр. АВС (угол АВС = 90°):
соsa = BC/AC => BC = c • cosa
sina = AB/AC => AB = c • sina
• Рассмотрим тр. АСС1 (угол АСС1 = 90°):
tgb = CC1/AC => CC1 = c • tgb
• Обьём прямой призмы вычисляется по формуле:
V = S ocн. • h
V = S abc • CC1 = ( 1/2 ) • BC • AB • CC1 = ( 1/2 ) • c • cosa • c • sina • c • tgb = ( 1/2 ) • c^3 • sina • cosa • tgb = ( 1/2 ) • ( 1/2 ) • 2sinacosa • c^3 • tgb = ( 1/4 ) • c^3 • sin2a • tgb

ОТВЕТ: ( 1/4 ) • c^3 • sin2a • tgb

100 ! в основании прямой призмы лежит прямоугольный треугольник с острым углом альфа и гипотенузой с
4,4(7 оценок)
Ответ:
chiminswife
chiminswife
16.06.2022

1) 

Радиус вписанной окружности правильного многоугольника совпадает с его апофемой (т.е. перпендикуляром, опущенным из центра на любую сторону) 

Правильный шестиугольник можно разделить на 6 правильных треугольников. Его площадь равна площади 6 таких треугольников и  S(шестиугольника)=6•S (треуг) 

Нам известен радиус вписанной в шестиугольник окружности, т.е. высота правильного треугольника АОВ (см. рисунок). Для нахождения площади правильного треугольника воспользуемся формулой 

S= \frac{h^2}{ \sqrt{3} }

Тогда S _{6} = \frac{6* 3^{2} }{ \sqrt{3} }18 \sqrt{3} дм²

––––––––––

2)

По условию 2 \pi r_{1}-2 \pi r _{2} =2 \pi R

Примем коэффициент отношения радиусов окружностей равным а. Тогда радиус первой равен 5а, второй –3а

5a-3a=40⇒

a=20 см

r1=100 см=1м

S1=π•1²=π м²

60 см=0,6 м 

S2=π•(0,6)²=0,36 м²

–––––––––––

3)

 Найдите площадь сегмента круга, радиуса 4 см, если его хорда равна 4√2 см

Пусть центр круга О, хорда - АВ. 

АО=ВО ⇒∆ АОВ - равнобедренный

По т.косинусов АВ²=АО²+ВО²- 2АО•ВО•cos∠AOB

32=2•16-2•16•cosAOB⇒

cos AOB=0, ⇒ ∠АОВ=90°. 

Площадь искомого сегмента равна разности площадей сектора с углом 90° и прямоугольного ∆ АОВ. 

Градусная мера полного круга 360°, значит, площадь сектора с углом 90°=1/4 площади круга 

S сектора=16π:4=4π

S ∆ АОВ=4•4:2=4•2

S сегм=4π-4•2=4(π-2)= ≈4,566 см²

4)

Отношения отрезков сторон треугольника АВС, на которые их делят данные точки,  одинаковы.

 Примем коэффициент отношения отрезков сторон равным а. 

Тогда АВ=7а. 

Треугольники у вершин подобны треугольнику АВС, т.к. имеют общую вершину и  стороны исходного треугольника пропорциональны сторонам треугольников, «отсекаемых» от него у вершин, с коэффициентом подобия 7:2, Поэтому эти отсекаемые треугольники равновелики. 

 Отношение площадей подобных треугольников равно квадрату коэффициента подобия. 

k=АВ:ВК=7:2 ⇒

S (ABC):S(BKM)=k²= 49/4

 245:S(BKM)=49:4⇒

S(Δ BKM)=20

S(ТКМОНР)=245-3•20=185 мм²


Надо 1. найдите площадь правильного шестиугольника, описанного около окружности, радиус которой раве
4,5(33 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ