Так как в условии не указано, к какой из сторон проведена высота, то возможны ТРИ случая ( так как в треугольнике три стороны.
Площадь треугольника равна S = (1/2)*a*h, где h - высота треугольника, а - сторона, к которой проведена высота.
1) S = (1/2)*85*36 = 1530 см².
2) S = (1/2)*60*36 = 1080 см².
3) Найдем третью сторону треугольника из двух прямоугольных треугольников, на которые делит данный треугольник высота, проведенная к третьей стороне.
По Пифагору одна часть третьей стороны равна √(85²-36²) = 77 см.
Вторая часть третьей стороны равна √(60²-36²) \= 48 см.
Третья сторона равна 77+48 = 125 см. Тогда
S = (1/2)*125*36 = 2250 см².
ответ: S1 = 1530см², S2 = 1080см², S3 = 2250см².
SMBK/SABC = 2•3/4•5 = 6/20 = 3/10
10SMBK = 3ABC
SMBK = 0,3SABC
Известно, что SABC = SMBK + 7√15/4
SABC = 0,3SABC + 7√15/4
0,7SABC = 7√15/4
SABC = 7√15/4 : 0,7
SABC = 5√15/2
По теореме о площади треугольника:
SABC = 1/2AB•BC•sinABC, откуда sinABC = 2SABC/(AB•BC)
sinABC = 5√15/(4•5) = √15/4
По основному тригонометрическому тождеству:
cosABC = √1 - sinABC² = √1 - 15/16 = 1/4
По теореме косинусов:
MK² = MB² + BK² - 2MB•BK•cosABC
MK² = 2² + 3² - 2•2•3•1/4 = 4 + 9 - 3 = 10
MK = √10.
ответ: MK = √10.