x^2+(b+1)x+b^2=1.5 x^2+(b+1)x+b^2-1.5=0 По т. Виета, x1+x2=-(b+1), x1*x2=b^2-1.5 Отсюда можно выразить x1^2+x2^2: x1^2+x2^2 = (x1+x2)^2-2*x1*x2 = (-(b+1))^2-2*(b^2-1.5) = b^2+2b+1-2b^2+3 = -b^2+2b+4. Получим, что сумма квадратов корней исходного уравнения изменяется квадратично в зависимости от b: f(b)=-b^2+2b+4 - парабола с ветвями вниз, имеющая наибольшее значение в вершине. b верш = -2/(2*(-1))=1. То есть при b=1 сумма квадратов корней исходного уравнения является наибольшей.
S=30*4=120 Р=(30+4)*2=68 пусть уменьшенная длина будет 30-у уменьшенная ширина 4-х новая площадь должна равняться 120/2 новый периметр 68-22=46 полупериметр 46/2=23 составим систему с 2-мя неизвестными:
(30-у)(4-х)=120/2 (30-у)+(4-х)=46/2
(30-у)(4-х)=60 30-у+4-х=23
(30-у)(4-х)=60 х+у=11
(30-у)(4-х)=60 (1) х=11-у (2)
подставляем наш х в (1) получаем (30-у)(4-х(11-у))=60 (30-у)(у-7)=60 30у-210-у²+7у-60=0 -у²+37у-270=0 Д=37²-4(-1)(-270)=1369-1080=289=17² у1=-27 нам не подходит т.к. сторона не может быть отрицательной у2=10
Сторона правильного треугольника — 10 см, углы по 60 градусов. Радиусом треугольника будет 2/3 от высоты этого треугольника (т. к в равностороннем треугольнике медианы/высоты/бессиктрисы совпадают, то точками пересечения они делятся в соотношении 2/1, считая от вершины) . Таким образом: R=2/3*a*sin(п/3). То есть 2/3*10*(корень из трёх пополам) или 10/корень из 3. Далее находим площадь круга: S=п*(R в квадрате) , потом делим площадь на 360 и умножаем на угол сектора (если в градусах) , а если сектор в радианах, то делим на 2п и так же умножаем
x^2+(b+1)x+b^2-1.5=0
По т. Виета,
x1+x2=-(b+1),
x1*x2=b^2-1.5
Отсюда можно выразить x1^2+x2^2:
x1^2+x2^2 = (x1+x2)^2-2*x1*x2 = (-(b+1))^2-2*(b^2-1.5) =
b^2+2b+1-2b^2+3 = -b^2+2b+4.
Получим, что сумма квадратов корней исходного уравнения изменяется квадратично в зависимости от b:
f(b)=-b^2+2b+4 - парабола с ветвями вниз, имеющая наибольшее значение в вершине.
b верш = -2/(2*(-1))=1.
То есть при b=1 сумма квадратов корней исходного уравнения является наибольшей.