Биссектриса параллелограмма отсекает от него равнобедренный треугольник. ( Накрестлежащие углы при параллельных QK и МN и секущей МК равны, и угол QMK=углу КМN, т.к. МК - биссектриса).
Тогда MQ=AB=6, и
QH=MN=QK+KH=6+4=10.
∆ QOK~ ∆ MON по трем равным углам - углы при О вертикальные, два других равны, как накрестлежащие.
k=QK:MN=6/10=3/5
Проведем КЕ || QM. Четырехугольник MQKT- ромб ( противоположные стороны параллельны и равны)
Площадь MQKE равна произведению высоты QP на сторону, к которой проведена. QP=3 по условию.
S (MQKE)=3•6=18 (ед. площади)
Диагональ МК делит ромб пополам.
S ∆ MQK=18:2=9
Отношение сходственных сторон ∆ QOK и ∆ MON равно k=3/5
KO:OM=3/5
MO=3+5=8 частей.
В треугольниках MQO и QOK высоты, проведенные из Q к МК, равны, поэтому их площади относятся как длины их оснований (свойство).
Тогда S∆ QOK= S ∆MQK:8•3=9:8•3=27/8 ( ед. площади) или 3³/₈
2) 36 и 54
3)74
Объяснение:
задание 2.
нарисуй прямоугольный треугольник. угол В=90, сверху А, снизу С. из точки С проведи прямую параллельно АВ и поставь на этой прямой точку К(ну или любую какую хочешь). уг. АСК=36°
1) уг. ВАС=уг. АСК=36°, также АК это накрест лежащие углы при пересечении прямых AB||AK, секущей АС.
2) уг. АСВ=90°-36°=54°(сумма острых углов)
задание 3.
подпиши прямые А, В, С(секущая слева), Д(секущая справа)
1)148°+32°=180, так как это соответственные углы при пересечении прямых А и В, секущей С, поэтому А||В
2) угол вертикальный, то тот угол равен 106°
3) х=180-106=74°, так как это соответственные углы при пересечении прямых А||В, секущей Д
Северный полюс - 90° с.ш.
Южный полюс - 90° ю.ш.