Радиус описанной окружности прямоугольного треугольника равен половине гипотенузы. Данный треугольник Пифагоров и гипотенуза равна 5см.
Точка М - центр описанной окружности.
Точка О - центр вписанной окружности.
Тогда R=2,5см, то есть ВМ=2,5см.
Радиус вписанной окружности равен по формуле:
r=(AC+BC-АВ)/2 = 2/2=1см.
Итак, СН=r=1см => HB=3-1=2см.
PB=HB=2см (касательные из одной точки).
Тогда МР=2,5-2=0,5см. В прямоугольном треугольнике ОМР по Пифагору:
ОМ=√(1²+0,5²)= √1,25 ≈ 1,118 ≈ 1,12см .
ответ: расстояние между центрами окружностей равно
√1,25 ≈ 1,12 см.
Или так: по теореме Эйлера в треугольнике расстояние между центрами вписанной и описанной окружностей находится по формуле:
d² = R² - 2·R·r.
В нашем случае R = 2,5см, а r = 1cм.
тогда d = √(2,5² -2·2,5) = √(2,5·0,5) = √1,25 ≈ 1,12 см.
№2. DABC – тетраэдр. М - середина АD. МК||(АВС). МК=3 см. Найдите длину ребра DC этого тетраэдра.
Тетраэдр — простейший многогранник, гранями которого являются четыре треугольника, т.е. треугольная пирамида. В условии не указаны длины ребер DABC. Поэтому решение даётся для правильного тетраэдра, все ребра которого равны.
МК||(АВС). МК лежит в плоскости ∆ АDC. Если плоскость проходит через данную прямую, параллельную другой плоскости, и пересекает эту плоскость, то линия пересечения плоскостей параллельна данной прямой. ⇒ МК║АВ. Так как М – середина АD, а МК||АВ, то МК - средняя линия ∆ АDB и равна половине АВ ⇒ AD=АВ=2•МК=6 см.
* * *
№3. ОАВ - прямоугольный треугольник (∠В=90°), ∠ АОВ=60°, АО=8 см, OF⊥АОВ). Найдите расстояние от точки D до прямой АВ, если OF=3 см.
Расстоянием от точки до прямой является длина отрезка, проведенного из данной точки перпендикулярно данной прямой. Треугольник АОВ прямоугольный, ОВ⊥ВА и является проекцией наклонной FB. По т. о 3-х перпендикулярах FB⊥АВ, поэтому является искомым расстоянием.
FО перпендикулярна плоскости ∆ АОВ. Если прямая, пересекающая плоскость, перпендикулярна этой плоскости, то она перпендикулярна каждой прямой, которая лежит в данной плоскости. ⇒ Треугольник FOB прямоугольный. FO=3 см (дано). ОВ=АО•cos60°=4см. В ∆ FOB по т.Пифагора FВ=√(FO²+OB²)=√(9+16)=5 см