На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
Площадь полной поверхности правильной четырехугольной призмы состоит из площади двух равных оснований ( квадратов) и четырех равных боковых граней (прямоугольников).
В основаниях призмы - квадраты с диагональю=8.
Диагональ делит квадрат на равнобедренные треугольники с острыми углами 45°
Значит, стороны оснований равны диагонали, умноженной на синус или косинус 45° или по т.Пифагора.
АВ=(8•√2):2=4√2
Высоту АА1 призмы найдем из равнобедренного прямоугольного ∆ АСА1.
АА1=А1С•sin45°=8
Площадь основаий
S осн = 2•АВ•ВС=2•(4v2)•(4v2)=64
Площадь боковых граней
4•AA1•AB=4•8•4√2=64√2
Полная площадь поверхности призмы
S полн =64+64√2=64•(1+√2) (ед.площади)