Под углом между скрещивающимися прямыми понимается угол между параллельными им прямыми, проходящими через одну точку. Проведем через точку `M` в плоскости основания прямую `MK`, параллельную `CL`(`K` - точка ее пересечения со стороной `AB`. Тогда искомый угол - это `/_DMK`. Найдем его с теоремы косинусов из треугольника `DMK` Так все ребра тетраэдра равны (вспоминаем определение правильного тетраэдра) , то треугольники `DBC`,`ABC`и `ADB` правильные и `CL=DM=DL=sqrt(3)/2`. `MK` - средняя линия в треугольнике `BCL`: `MK=sqrt(3)/4` `DK` находим из прямоугольного треугольника `DLK`: `DK=sqrt((1/4)^2+(sqrt(3)/2)^2)=sqrt(13)/4 По теореме косинусов `DK^2=MK^2+DM^2-2*MK*DMcos(/_DMK)` Откуда `cos(/_DMK)=1/6` `/_DMK=arc cos(1/6)` ответ: `arc cos(1/6)`
Пустыня в тусклом, жарком свете.За нею — розовая мгла.Там минареты и мечети,Их росписные купола. Там шум реки, базар под сводом,Сон переулков, тень садов —И, засыхая, пахнут мёдомНа кровлях лепестки цветов. Иван Бунин
Налево – шаг, направо – шаг: Кругом – сплошной песок! Пустыня – это не пустяк Ни вдоль, ни поперёк.
Внутри пустыни – пустота. Она ничем не занята Ни летом, ни зимою. Одни барханы – там и тут, Да иногда качнёт верблюд Горбатою спиною.
За шагом – шаг, за шагом - шаг... Пройти пустыню – не пустяк. Ступаю осторожно... Тут можно три часа бродить, Зато уж ноги промочить В пустыне невозможно.
И горло больше не болит, И вообще – здоровый вид Да только мама говорит: – Ну на сегодня хватит! Вот сорванец!.. И как ты мог Пойти в пустыню без сапог?! А вдруг потоп! А вдруг поток... Лежи-ка ты в кровати!