АВСD - равнобокая трапеция, АС и ВD диагонали, по условию они перпендикулярны.
Проведите СК параллельно диагонали ВD. К лежит на продолжении АD. Получится треугольник АСК. Он прямоугольный, потому что угол АСК= углу АОD = 90 градусов. К тому же этот треугольник равнобедренный, потому что в нем СК=АС. FR - основание треугольника.
Проведите высоту этого треугольника с вершины С. Пусть это будет отрезок СМ.
Высота в равнобедренном треугольнике, проведенная к основанию, будет чем ? -медианой. Значит, М - середина АК. СМ = 1/2АК = 1/2(АD + DК)
а DК = ВС, как противоположные стороны параллелограмма ВСКD.
Тогда
СМ = 1/2(а + в)
А средняя линия как раз и равна 1/2(а+в)
Значит, высота равна средней линии.
Дано:
Трапеция ABCD, угол D равен 60 градусов, диагональ BD делит этот угол пополам. AD = 14 см.
Углы ADB = BDC = 60 / 2 = 30 градусов.
Угол DBC = ADB = 30 градусов (как углы при параллельных прямых)
Треугольник BCD равнобедренный с основанием BD, следовательно, BC = CD.
Угол В трапеции равен 90 + 30 = 120 градусов, угол А равен 180 - 120 = 60 градусов.
Трапеция равнобедренная, AB = BC = CD.
AD = 2AB по законам прямоугольного треугольника.
AB + BC + CD + AD = AB + AB + AB + 2AB = 5AB = 2,5AD = 2,5 * 14 = 35 см.
ответ: 35 см.
x² -12x +a =0 ; x₁+ x₁q =12 , a =x₁* x₁q = x₁²q ;
x² -3x +b =0 ; x₁q²+ x₁q³ =3 , b =x₁q² *x₁q³ =x₁².q⁵ .
{ x₁+ x₁q =12 ; x₁q²+ x₁q³ =3 .⇔{ x₁(1+ q) =12 ; x₁q²(1+ q) =3 .
q² =3/12 ⇒q =1/2 (q>0)
x₁ =12/(1+q) =12/(1+1/2) 8 .
8 ; 4; 2 ; 1
a = x₁²q =8²*1/2 =32 [ x² -12x +32 =0 ]
b =x₁².q⁵= 8² *(1/2)⁵ =2 . [ x² -3x + 2 =0 ].
ответ : a=32 ; b =2.