Диагональ прямоугольника делит его на два треугольника, отношение сторон которых равно отношению сторон "египетского треугольника". т.е. 3:4:5
Примем коэффициент отношения сторон за х.
Тогда при катетах 3х и 4х гипотенуза равна 5х.
Следовательно , диагональ здесь играет роль гипотенузы
5х=20
х=4
Один катет равен 3*4=12 см - это меньшая сторона прямоугольника
другой 4*4=16 см - это большая его сторона.
ответ: Большая сторона прямоугольника равна 16 см.
Задачу можно решить и через теорему Пифагора:
20²=(3х)²+(4х)²
400=9х²+16х²
25х²=400
х²=16
х=4 см
Но гораздо удобнее знать хотя бы несколько так называемых Пифагоровых троек, к которым относится и египетский треугольник.
Рассмотрим ∆AME и ∆BMC.
∠AMC = ∠BMC - как вертикальные
∠EAC = ∠BCA - как накрест лежащие.
Значит, ∆AME~∆CMB - по I признаку.
Из подобия треугольников => AE/BC = AM/MC
AE = 1/2AD = 1/2BC.
1/2 = AM/MC = AM/(AC - AM)
2AM = AC - AM
3AM = AC
AM = 3AC
Значит, AM:MC = 1:2.
2) SABD = SBCD, т.к. площади равных фигур равны.
SAEB = SBED, т.к. медиана BE делит треугольник ABD на два равновеликих треугольника AEB и BED.
Тогда SAEB = 1/2SABD = 1/4SABCD
SEDCB = SABCD - SAEB = SABCD - 1/4SABCD = 3/4SABCD
SAEB/SEBCD = (1/4)/(3/4) = 1:3
ответ: 1:2; 1:3.