Дано: ABCD - трапеция CE || AB DE = 6 см AE = 11 см
1. Рассмотрим четырехугольник АВСЕ: CE || AB (по условию) ВС || AE (свойство трапеции) следовательно четырехугольник АВСЕ - параллелограмм противолежащие стороны параллелограмма равны ⇒ ВС = АЕ = 11 см
АD = АЕ + DЕ = 11 + 6 = 17 см Средняя линия трапеции равна полусумме оснований Средняя линия = (АD + ВС)/2 = (17 + 11)/2 = 28/2 = 14 см.
2. В треугольнике СDЕ сумма сторон СЕ и СD = 21 - 6 = 15 см АВ = СЕ (так как АВСЕ параллелограмм) следовательно сумма боковых сторон трапеции АВ + СD = 15 см.
Дано: ABCD - трапеция CE || AB DE = 6 см AE = 11 см
1. Рассмотрим четырехугольник АВСЕ: CE || AB (по условию) ВС || AE (свойство трапеции) следовательно четырехугольник АВСЕ - параллелограмм противолежащие стороны параллелограмма равны ⇒ ВС = АЕ = 11 см
АD = АЕ + DЕ = 11 + 6 = 17 см Средняя линия трапеции равна полусумме оснований Средняя линия = (АD + ВС)/2 = (17 + 11)/2 = 28/2 = 14 см.
2. В треугольнике СDЕ сумма сторон СЕ и СD = 21 - 6 = 15 см АВ = СЕ (так как АВСЕ параллелограмм) следовательно сумма боковых сторон трапеции АВ + СD = 15 см.
SD=V5-гипотенуза ОД-радиус вписанной окр.
находим по ф-ле R=a/2V3=2V3/2V3=1
по т . Пифагора SO^2=V5^2-1^2=4 SO=2