1) прямые ab и cd пересекаются в точке o. докажите,что если ad||bc и od=co, то ∆aod=∆cob. 2) ∆abc равнобедренный,mp||bc,mp||kh, угол b=70°,am: mb=1: 2,mk: kb=1: 3,ab=6 сантиметров. найдите угол a, угол akh, угол kha, hc.
Рассматриваем в плоскости - АКД (треугольник)- полный конус, АВСД(равнобокая трапеция)-усеченный конус, АВ=СД=15-образующая, КО-высота треугольника=высота полного конуса, МО-высота трапеции = высота усеченного конуса, КО=2МО, ВС и КО пересекаются в точке М,КМ=МО, в треугольнике АКД ВС параллельна АД и делит КО на две равные части, тогда КО-средняя лини треугольника АКД, ВС=1/2АД, ВС-диаметр верхнего основания, ВМ=МС=радиус верхнего основания, АД-диаметр нижнего основания, АО=ОД=радиус нижнего основания, АО=2ВМ, ВМ=1/2АО, боковая поверхность усеченного конуса=пи*(радиус нижнего+радиус верхнего)*образующая=пи*(АО+1/2АО)*АВ, 405пи=пи*(3*АО/2)*15, 3*АО/2=27, АО=18, ВМ=1/2АО=18/2=9, в трапеции АВМО проводим высоту ВН на АД, НВМО-прямоугольник, ВМ=НО=9, АН=АО-НО=18-9=9, треугольник АВН, ВН=корень(АВ в квадрате-АН в квадрате)=корень(225-81)=12 = высота троапеции=высота усеченного конуса=МО, объем=1/3*пи*МО*(АО в квадрате+ВМ в квадрате+АО*ВМ)=1/3*пи*12*(324+81+18*9)=2268пи
S=AB*BD Рассмотрим прямоугольные треугольники ABD и KBM. Они подобны по первому признаку подобия: два угла одного треуг-ка соответственно равны двум углам другого. Угол ABD - общий прямой, а углы BAD и BKM равны как соответственные углы при пересечении параллельных прямых AD и КМ секущей АВ (<BKM=<A=60°). Зная, что сумма острых углов прямоугольного треугольника равна 90°, находим угол ВМК: <BMK=90-<BKM=90-60=30°. Катет ВК прямоугольного треугольника KBM, лежащий против угла ВМК в 30°, равен половине гипотенузы МК, значит ВК=4:2=2 см По теореме Пифагора найдем ВМ: BM=√MK²-BK²=√16-4=√12=2√3 см У подобных треугольников ABD и KBM коэффициент подобия k равен: k=BM : BD=1 : 2 (по условию М - середина отрезка BD). Значит, BK : AB = 1 : 2, отсюда АВ = 2*ВК=2*2=4 см BM : BD=1 : 2, отсюда BD = 2*BM=4√3 см S=4*4√3=16√3 см²
∠COB = ∠AOD (как противоположные углы)
OD = CO
ΔOBC = ΔAOD (второй признак)