ответ:5см
Объяснение: a) Смотри, так как угол А равен 60 градусов, а радиус равен 5 см, а угол А касается окружность, то можно мысленно представить прямой треугольник( назовем его АBO), прочертив отрезок от центра окружности О до точки касания угла к окружности. Теперь рассмотрим треугольник АBO, у которого угол А равен 60 градусов, радиус равен 5 см, а BO 90 градусов( потому что в точке пересечения отрезка к окружности получается всегда два прямых угла с разных сторон))( BO тоже является радиусом). и так, следовательно угол O равен 90-60=30 градусов, а катет лежащий против угла в 30 градусов равен половине гипотенузы), значит АО равняется 5*2=10см
12 см
Объяснение:
1) Острый угол, составляющий 2/3 прямого угла, равен:
90 · 2/3 = 60°.
2) Второй острый угол прямоугольного треугольника равен:
180 - 90 - 60 = 30°.
3) Меньший катет лежит против меньшего угла, то есть против угла 30°.
Катет, лежащий против угла 30°, равен половине гипотенузы.
Пусть х - меньший катет прямоугольного треугольника, тогда гипотенуза равна 2х. Составим уравнение и найдём х:
х + 2х = 18
3х = 18
х = 18 : 3 = 6 см - это длина меньшего катета.
4) Находим длину гипотенузы:
6 · 2 = 12 см
ответ: 12 см
оси Ох принадлежат точки, у которых у=0 и z=0
A(-4:0:0)
оси ОY принадлежат точки, у которых x=0 и z=0
C(0:2:0)
в) плоскости Оху принадлежат точки, у которых z=0
A(-4:0:0),B(5:-3:0),C(0:2:0),D(3:-6:0)
г)плоскости Оуz принадлежат точки, у которых x=0
C(0:2:0), E(0:0:-10),F(0:9:-7)