Вравнобокой трапеции длина средней линии 12см,длина боковой стороны 4см,а острый угол при основании трапеции 60 градусов. найдите длину меньшего основании трапеции
Проводим высоту с 2 сторон, пусть будут точки Н и М, треугольники АВН=СДМ по гипотенузе и острому углу=> значит АН=ДМ=0,5АВ=6 как катет потив угла в 30 градусов. Средняя линия КО=0,5(ВС+АД) 24= ВС+АН+ДМ+НМ ВС=НМ 24=ВС+6+6+ВС ВС=6
Дано: AB =BC; BH ⊥ AC ; AK =KB ; L∈ окружности (B,C , K ).
док. ΔAKL равнобедренный
Окружность проходит через три точки K ,B и C (описанная около треугольника KBC) ее центр это точка пересечения средних перпендикуляров KB и BС . AB =BC ⇒∠ABH =∠CBH (высота BH одновременно и биссектриса ; свойство равнобедренного треугольника ) . ∠KBL =∠CBL , L∈ BH * * *∠KBL=∠ABH ,∠CBL=∠CBH * * * (дугаKL)/2 = (дугаCL)/2 ⇒ KL =CL( равные дуги _равные хорда) , но CL =AL , следовательно KL =AL т.е. треугольник AKL равнобедренный .
Пусть ABCD - данный параллелограмм, а A', B', C', D' - точки, в которые переходят A, B, C, D. Т.к. при параллельном переносе плоскость переходит в параллельную ей плоскость (или в себя), то плоскость α'В'С'D' параллельна плоскости αВCD.Т. к. при параллельном переносе точки смещаются по параллельным (или совпадающим) прямым на одно и то же расстояние, то AA' || BB' || CC' || DD' и AA' = BB' = CC' = DD'.Так что в четырехугольнике AA'D'D противолежащие стороны параллельны и равны, а, значит, AA'D'D — параллелограмм. Тогда A'D' = AD и A'D' || AD.Аналогично A'B' = AB и A'B' || AB; C'D' = CD и C'D' || CD; B'C' = BC и B'C' || BC.Т. к. две прямые, параллельные третьей, параллельны, то получаем, что A'D' || B'C', A'B' || C'D'.А, значит, A'B'C'D' — параллелограмм, равный параллелограмму ABCD (т.к. соответствующие стороны равны). Что и требовалось доказать.
24= ВС+АН+ДМ+НМ ВС=НМ
24=ВС+6+6+ВС
ВС=6