1 случай. Точка A лежит внутри окружности с центром в точке O или на окружности. Докажем, что середины хорд, проходящих через A, образуют окружность с диаметром AO. Если точка M лежит на этой окружности, то угол OMA прямой как вписанный и опирающийся на диаметр, а тогда M - середина хорды, проходящей через A и M. В обратную сторону так же просто.
2 случай. Точка A лежит вне окружности. Тогда середины хорд, проходящих через A, образуют часть окружности с диаметром AO, лежащей внутри нашей. Доказательство аналогично.
1. Теорема 1 (первый признак параллельности) Если при пересечении двух прямых третьей накрест лежащие(внутренние или внешние) углы равны, то такие прямые параллельны.
Доказательство:
Дано: прямые AB, CD и MN; угол 1= угол 2 . Требуется доказать: AB||CD.
Возьмем точку O — середину MN и проведем OK перпендикулярно CD. Докажем, что OK перпендикулярно AB. Треугольник OKN= треугольник OLM (по стороне и двум прилежащим углам). В них угол OLM= углу OKN. Но угол OKN = 180 градусов. Следовательно, KL перпендикулярно AB: AB||CD. Если будет дано, что равны внешние накрест лежащие углы, то обязательно будут равны и внутренние накрест лежащие углы.
2. Поскольку сумма всех углов треугольника равна 180 градусам, то 180 - 110 = 70 70 / 2 = 35 ответ: углы треугольника 35 и 35.
Пусть внешний угол будет смежен с верхним углом треугольника. По свойству внешнего угла (внешний угол равен сумме двух углов несмежных с ним). Т.к треугольник равнобедренный, то оставшиеся углы при основании равны, значит они равны, как 110/2 = 55 градусов - два угла при основании. Верхний угол тогда равен, 180-110=70 градусов.
Есть второе решение. Пусть внешний угол смежен с углом при основании, тогда 180-110=70 градусов - угол при основании. Соответственно второй угол - тоже равен 70 (который при основании). А третий тогда равен, как 180-(70+70)=180-140=40 градусов.
2 случай. Точка A лежит вне окружности. Тогда середины хорд, проходящих через A, образуют часть окружности с диаметром AO, лежащей внутри нашей. Доказательство аналогично.