М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
allaaleksandro1
allaaleksandro1
26.03.2023 02:50 •  Геометрия

1) в прямоугольной трапеции abcd (ad параллельно bc), a=90 градусов, угол acd=90 градусов, bc=36 см, ac=60 см. найдите ad. 2) в треугольнике abc: ac=48 см, bc=25 см. на стороне bc отложили отрезок bd=20 см, а на стороне ac - отрезок cn=8 см. подобны ли треугольники abc и ndc. !

👇
Ответ:
aminka0095
aminka0095
26.03.2023
1) Проведём высоту СЕ.
Отрезок АЕ = ВС = 36 см.
СЕ =√(АС²-АЕ²) = √(3600-1296) = √2304 = 48 см.
По свойству высоты СЕ из вершины прямого угла АСД:
ЕД/СЕ = СЕ/АЕ.
Отсюда ЕД = СЕ²/АЕ = 2304/36 = 64 см.
АД = 36 + 64 = 100 см.

2) ДС = 25 - 20 = 5 см.
Проверяем, подобны ли треугольники ABC и NDC?
ДС/ВС = 5/25 = 1/5.
CN/АС = 8/48 = 1/6.  Нет - не подобны.
4,8(94 оценок)
Открыть все ответы
Ответ:
Poli4ka228
Poli4ka228
26.03.2023

Проверим, лежит ли точка А(5,-3) на какой-либо заданной высоте. Подставим координаты этой точки в уравнения высот. Если равенство получим верное, то точка лежит на прямой.

13x+4y-7=13\cdot 5+4\cdot (-3)-7=46\ne 0\\\\2x-y-1=2\cdot 5-(-3)-1=12\ne 0

Точка А(5,-3) не лежит ни на одной высоте. Для определённости, пусть высота BN имеет уравнение 2х-у-1=0, а высота СМ: 13х+4у-7=0.

BN⊥AC  ⇒  направляющий вектор для АС равен нормальному вектору для BN:  \vec{s}_{AC}=(2,-1) .

Точка А(5,-3)∈АС и уравнение АС имеет вид:

\frac{x-5}{2}=\frac{y+3}{-1}\; \; ,\; \; -x+5=2y+6\; \; ,\; \; \underline {x+2y+1=0}

CM⊥AB  ⇒  направляющий вектор для АВ равен нормальному вектору для CМ:  \vec{s}_{AB}=(13,4)  .

Точка А(5,-3)∈АВ и уравнение АВ имеет вид:

\frac{x-5}{13}=\frac{y+3}{4}\; \; ,\; \; 4x-20=13y+39\; \; ,\; \; \underline {4x-13y-59=0}

Координаты точки В найдём как точку пересечения АВ и BN, а координаты точки С найдём как точку пересечения АС и CM .

B:\; \left \{ {{4x-13y=59\qquad } \atop {2x-y=1\, |\cdot (-2)}} \right.\oplus \left \{ {{-11y=57} \atop {2x=y+1}} \right. \; \; \left \{ {{y=-\frac{57}{11}} \atop {2x=-\frac{46}{11}}} \right.\; \; \left \{ {{y-\frac{57}{11}} \atop {x=-\frac{23}{11}}} \right. \; \; B(-\frac{23}{11}\, ,\, -\frac{57}{11})\\\\\\C:\; \left \{ {{x+2y=-1\, |\cdot (-2)} \atop {13x+4y=7\qquad }} \right.\oplus \left \{ {{2y=-x-1} \atop {11x=9\quad }} \right. \; \; \left \{ {{2y=-\frac{20}{11}} \atop {x=\frac{9}{11}}} \right.\; \left \{ {{y=-\frac{10}{11}} \atop {x=\frac{9}{11}}} \right.\; \; C(\frac{9}{11}\, ,\, -\frac{10}{11})


Даны уравнения прямых, содержащих высоты треугольника, и координаты одной из вершин треугольника. вы
4,6(43 оценок)
Ответ:
olavishneva
olavishneva
26.03.2023

Линия пересечения плоскости  AD₁C₁ и плоскости основания есть ребро параллелепипеда АВ.

Угол между плоскостью AD₁C₁ и плоскостью основания есть угол между плоскостью  AD₁C₁ перпендикуляром к АВ, то есть высотой ромба. На рисунке обозначена как ВН.

ΔСВН - прямоугольный, с прямым углом Н, по условию острый угол ромба-основания равен 60⁰, отсюда, зная sin60⁰ находим высоту ромба ВН:

 

а) sin60^0=\frac{\sqrt3}{2}\\\\sin60^0=\frac{BH}{BC}\\\\BH=BCsin60^0=\frac{a\sqrt3}{2}

Можно было вычислить и так, как мы находили АН во вчерашнем задании, через т. Пифагора, зная, что СН=а/2, как катет, лежащий против угла в 30⁰, но сегодня решаем так, чтобы показать разные пути решения.

 

 б) Высоту параллелепипеда HH₁находим из прямоугольного ΔВН₁Н в котором угол Н прямой, угол В=60⁰, и зная значение tg60⁰:

 

tg60^0=\sqrt3\\\\tg60^0=\frac{HH_1}{BH}\\\\HH_1=\sqrt{3}\cdot BH=\sqrt{3}\cdot\frac{a\sqrt3}{2}=1,5a

 

в) Найти площадь боковой поверхности - самая простая часть этого задания:

S_6_o_k=Ph, где P и h - периметр основания и высота пераллелепипеда соответственно.

S_6_o_k=4a\cdot1,5a=6a^2

 

 

г) S=S_6_o_k+2S_O_C_H=6a^2+2a\cdot\frac{a\sqrt{3}}{2}=6a^2+a^2\sqrt{3}=a^2(6+\sqrt{3})

4,8(47 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ