Сума величин кутів трикутника АОВ, що створюють діагоналі та одна сторона прямокутника завжди дорівнює 180 градуса, тобто:АВО+ВОА+ОАВ=180Гр.А і В є вершинами протилежних кутів пряокутника, що прилягають до однієї сторони. Отже у прямокутнику дані кути будуть однакові, тобто величина кута АВО=величині кута ВАО=30градусам. Звідси 180-30-30=120градусів -величина кута АОВ, що є кутом між діагоналяи прямокутника.
ДОДАТКОВО:Отже ми маємо два протилежні кути по 120гр. Сума величини кутів прямокутника становить 360 гр.Причому величини протележних кутів однакові. Маємо 360-120-120=120. 120/2=60. маємо кути: АОВ=СОД=120гр. ВОС=ДОА=60гр.
На сторонах угла∡ABC точки A и C находятся в равных расстояниях от вершины угла BA=BC. Через эти точки к сторонам угла проведены перпендикуляры AE⊥BA CD⊥BC.
1. Чтобы доказать равенство ΔAFD и ΔCFE, докажем, что ΔBAE и ΔBCD, по второму признаку равенства треугольников:
BA=BC
∡BAF=∡BCF=90°
∡ABC — общий.
В этих треугольниках равны все соответсвующие эелементы, в том числе BD=BE, ∡D=∡E.
Если BD=BE и BA=BC, то BD−BA=BE−BC, то есть AD=CE.
Очевидно равенство ΔAFD и ΔCFE также доказываем по второму признаку равенства треугольников:
AD=CE
∡DAF=∡ECF=90°
∡D=∡
Подробнее - на -
Объяснение:
Решение дано Пользователем 21sadtylers Отличник, исправлена опечатка.
Для начала изобразим плоскость bc1d. Это совсем несложно – каждая пара точек лежит в одной из граней куба, поэтому просто соединим их. Далее проведём ТМ||С1В, ТN||C1D, соединим M и N – получим искомое сечение.
BC1D – равносторонний, т.к. каждая сторона является диагональю одинаковых квадратов. Все стороны TMN вдвое меньше сторон BC1D – это видно в треугольниках, для которых стороны TMN являются средними линиями. Получается, TMN тоже равносторонний. Найдем его сторону.
Площадь правильного треугольника можно найти по формуле S=a²√3/4.
Выразим а=√(4S/√3)=√(4*4√3/√3)=4.
Посмотрим на треугольник СМТ: он прямоугольный и равнобедренный, можем найти его стороны по теореме Пифагора:
ТМ² = 2СМ²
СМ = √(ТМ²/2) = √(4²/2) = √8 = 2√2
найдем ребро куба: 2*2√2 = 4√2
ну и площадь поверхности:
S = 6a² = 6*(4√2)² = 6*32 = 192 кв. ед.