М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Lovecoffe777
Lovecoffe777
20.11.2021 20:22 •  Геометрия

Напишите уравнение окружности проходящей через точку a(1; 3) если известно что центр окружности лежит на оси абсцисс а радиус равен 5

👇
Ответ:
nelyaaa01
nelyaaa01
20.11.2021
Так как расстояние от точки А до оси абсцисс (оно равно 3) меньше радиуса 5, то точек на оси абсцисс, расстояние от которых до точки А равно 5, будет 2. Они находятся как точки пересечения окружности радиусом 5 с центром в точке А.
Уравнение такой окружности (х-1)²+(у-3)²=5². На оси Ох у = 0.
Тогда (х-1)²+(0-3)²=5². х²-2х+1+9 = 25.
Получили квадратное уравнение х²-2х-15 = 0.
Квадратное уравнение, решаем относительно x: Ищем дискриминант:
D=(-2)^2-4*1*(-15)=4-4*(-15)=4-(-4*15)=4-(-60)=4+60=64;Дискриминант больше 0, уравнение имеет 2 корня:   
x₁=(√64-(-2))/(2*1)=(8-(-2))/2=(8+2)/2=10/2=5;   x₂=(-√64-(-2))/(2*1)=(-8-(-2))/2=(-8+2)/2=-6/2=-3.   
Имеем 2 центра: (-3; 0) и (5; 0)

ответ: имеем 2 уравнения окружности, проходящей через точку A(1; 3), если известно, что центр окружности лежит на оси абсцисс, а радиус равен 5:
(х+3)² + у² = 5²,
(х-5)²+ у² = 5².
4,4(77 оценок)
Открыть все ответы
Ответ:
Amir011kz
Amir011kz
20.11.2021

В соответствии с классическим определением, угол между векторами, отложенными от одной точки, определяется как кратчайший угол, на который нужно повернуть один из векторов вокруг своего начала до положения сонаправленности с другим вектором. Для заданного варианта углы между векторами могут быть определены из соотношения углов в треугольнике ABC, в котором ∠АСВ=90°, ∠СВА=40°, соответственно ∠САВ=180°-(90°+40°)=50°. Тогда -

- угол между векторами СА и СВ равен ∠АСВ=90°;

- угол между векторами ВА и СА равен ∠САВ=50°;

- угол между векторами СВ и ВА равен ∠САВ+∠АСВ=50°+90°=140°

О нас

4,5(8 оценок)
Ответ:
Uprava78
Uprava78
20.11.2021

Например, для ∠A∠A, внешними будут углы ∠1∠1 и ∠2∠2 (см. рис.)

Свойства внешних углов треугольника

Сумма внешних углов треугольника, взятых по одному при каждой вершине, равна 360∘360∘.

Сумма внешнего и внутреннего угла при одной вершине равна 180∘180∘.

Внешний угол треугольника равен сумме двух углов треугольника, не смежных с ним.

∠1=∠B+∠C∠1=∠B+∠C

Примеры решения задач

Задание. В треугольнике ΔMNKΔMNK, внешний угол ∠M∠M равен 120∘120∘, а угол ∠N=65∘∠N=65∘. Найти угол ∠K∠K.

Решение. По теореме о внешнем угле∠M=∠N+∠K∠M=∠N+∠K. Подставляя в это равенство исходные данные, получим

120∘=65∘+∠K120∘=65∘+∠K

Выразим ∠K:∠K=120∘−65∘⇒∠K=55∘∠K:∠K=120∘−65∘⇒∠K=55∘

ответ. ∠K=55∘∠K=55∘

Задание. Внешние углы при двух вершинах треугольник равны 70∘70∘ и 150∘150∘. Найти внутренний угол при третьей вершине.

Решение. Обозначим внешние углы ∠1,∠2,∠3∠1,∠2,∠3, а соответствующие им внутренние - 

4,7(63 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ