Обозначим сторону основания за а. Величина её равна a = √S = √8 = 2√2. В вертикальной плоскости, проходящей через боковое ребро и ось пирамиды, рассматриваем прямоугольный треугольник, где гипотенуза - боковое ребро, а катеты - высота пирамиды и половина диагонали основания. Половина диагонали основания равна а√2 / 2 = 2√2*√2 / 2 = 2. 1) высота пирамиды Н =2*tg 60° = 2√3. 2) тангенс двугранного угла при основании этой пирамиды равен отношению высоты пирамиды к перпендикуляру из центра основания на сторону (для квадрата это а / 2 = (2√2) / 2 = √2. Отсюда tg α = (2√3) / √2 = 2√1,5 = 2,44949.
1 Тр. AOB=BOC. BO=OB, AO=OC, угол AOB=BOC как вертикальные, значит эти треугольники равны по двум сторонам и углу между ними. 2.PK=NK, угол P=углу N, углы MKN=PKB(как вертикальные), значит тр. MKN=PKB по стороне и двум прилежащим углам. 3.АВ=АD, угол ВАС=DAC, AC - общая, значит тр. BAC=DAC по двум сторонам и углу между ними 4. BC=AD, угол CBD=ADB, BD - общая, значит тр. CBD=ADB по двум сторонам и углу между ними 5.угол MDF=BDF, DFM=DFB, DF - общая, значит тр. MDF=BDF по стороне и двум прилежащим углам. 6.угол MAP=NPA, AP - общая, значит тр. MAP=NPA по стороне и двум прилежащим углам...
(S)CBE= 1/2 (S) CBD=6
(S)ABED=(S)ABCD - (S)CBE= 24-6 = 18
ответ: 18