В треугольнике угол A=30° угол C=45° а высота BD= 4 см.
Найдите стороны треугольника.
----------------------
Высота ВД противолежит углу, равному 30º. ⇒ BD равна половине гипотенузы ∆ АВД.
Гипотенуза АВ=4*2=8 см.
АD найдем по т.Пифагора:
АD²=АВ²-ВD²
АD=√(64-16)=√48
АD=4√3 см
В прямоугольном ∆ ВDС острый угол ВСD=45º, ⇒ угол СВD=45º,
∆ СВD - равнобедренный, СD=ВD=4 см
По т.Пифагора ВС=4√2 см ( проверьте)
Тогда АС=АD+DС=4√3+4=4(√3+1)
Стороны равны
АВ=8,
ВС=4√2
AC =4(√3+1)
-----------
Если Вы уже изучали тригонометрические функции, то можно использовать их значение для заданных углов.
АВ=ВD:sin30º=4:0,5=8 см
BC=BD:sin45º=4:(√2)/2=4√2 см
АС=АD+DС=4√3+4=4(√3+1) см
ВС ⊥ АС - значит, ∆ АВС прямоугольный.
∆ ABC~∆ AFE - оба прямоугольные с общим острым углом А.
Судя по отношения катета и гипотенузы в ∆ АFE, этот треугольник- египетский, значит, и ∆ АВС - египетский с отношением сторон 3:4:5 и коэффициентом подобия k=12:3=4, откуда АВ=5•4=20 см.
Полное решение:
∆ AEF~∆ ABC. Из подобия треугольников следует отношение ВС:EF=AB:AE
12:6=AB:10
6АВ=120 АВ=20 см