точно НЕ третий вариант, треугольник почти равнобедренный и все зависит от величины угла В -тупоугольный или остроугольный треугольник (в остроугольном треугольнике все высоты расположены внутри треугольника)
вид треугольника определить теорема косинусов (косинус тупого угла-число отрицательное, косинус острого угла-число положительное, cos(90°)=0)
22^2 = 16^2+17^2-2*16*17*cosB
(22-17)(22+17) = 256-2*16*17*cos(B)
2*16*17*cos(B) = 256-5*39
cos(B) > 0 ---> треугольник остроугольный, ответ 1)
Окружность – замкнутая линия, все точки которой находятся на одинаковом расстоянии от данной точки. Эта точка называется центром окружности. Круг – это часть плоскости, которая лежит внутри окружности (вместе с самой окружностью) . Радиус – отрезок, соединяющий центр окружности с точкой на окружности.
Все радиусы окружности равны друг другу.
Диаметр – отрезок, соединяющий две точки окружности и проходящий через центр окружности.
ответ: на стороне ВС.
Объяснение:
точно НЕ третий вариант, треугольник почти равнобедренный и все зависит от величины угла В -тупоугольный или остроугольный треугольник (в остроугольном треугольнике все высоты расположены внутри треугольника)
вид треугольника определить теорема косинусов (косинус тупого угла-число отрицательное, косинус острого угла-число положительное, cos(90°)=0)
22^2 = 16^2+17^2-2*16*17*cosB
(22-17)(22+17) = 256-2*16*17*cos(B)
2*16*17*cos(B) = 256-5*39
cos(B) > 0 ---> треугольник остроугольный, ответ 1)