Объяснение:
Все задачи решаются через площади треугольников: S(△)=1/2*a*h; S=√p(p-a)(p-b)(p-c); и параллелограмма: S(пар)=a*h
1) S=1/2*16*12=96; с - гипотенуза, с=√(16²+12²)=√(256+144)=20
S=1/2*c*h; h=96*2/20=9.6
2) Если принять, что там дан параллелограмм (в условии этого не сказано, но по-другому я не знаю как решить), то
S(пар)=2*3=6 (через сторону равную 3 и высоту равную 2)
S(пар)=5*h (через другую сторону и искомую высоту) => h=6/5=1.2
3) p=(a+b+c)/2=34
S=√34(34-17)(34-25)(34-26)=√34*17*9*8=204
S=1/2*26*h; h=2*204/26=204/13=15 9/13 (примерно 15,69)
4) a - катет, а=√(25²-20²)=15
S=1/2*15*20=150
S=1/2*25*h; h=2*150/25=12
Оба они являются прямоугольными: угол АМО и угол АDО прямые, поскольку стороны треугольника АВС являются касательными к радиусам вписанной окружности, проведённым из центра в точки касания (по условию это точки M, N, D).
MO=DO=r, АО является их общей гипотенузой.
Следовательно ΔАМО=ΔАDО по первому признаку равенства прямоугольных треугольников (равенство катета и гипотенузы).
Значит АМ=АD=5 cм.
Отрезок BD является одновременно медианой, биссектриссой и высотой, значит
AD=CD=5 cм ⇒ AС=10 см
АВ=ВС=5+8=13 см
P=10+13+13=36 cм.
радиус вписанной окружности определяется из соотношения:
r=S/p - где S- площадь, а р- полупериметр треугольника, р=Р/2
чтобы найти площадь S найдём высоту BD:
BD=√(AB²-AD²=√(169-25)=√144=12 cм
SΔABC=1/2*АС*BD=1/2*10*12=60 cм²
r= S/p=60/18=10/3=3целых и 1/3 см
ответ: Р=36 см
r=3целых и 1/3 см