М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Vadim55554
Vadim55554
16.11.2020 19:30 •  Геометрия

Вравнобедренном треугольнике aabc(ac=bc)угол a=30° найдите высоту к основанию если ad =20 cм

👇
Ответ:
xayalaamirova2
xayalaamirova2
16.11.2020
Проводим прямую FD за точку В и опускаем перпендикуляр СD. Рассмотрим треугольник ADC. Угол D=90. угол А равен 30, угол С равен 60. sqt - это квадратный корень.
По теореме синусов: 40/(sqt3)=2*CD. Откуда CD=20/(sqt=3)
AD=20, углы известны, находим АС. 40/sqt3
Проведем высоту ВЕ.
Рассмотрим треугольник ВЕС. Угол В равен 60 градусам, так как Е - прямой, а С равен 30. Аналогично по теореме синусов находим все его стороны, в том числе высоту исходного треугольника. Теорема синусов: стороны треугольника пропорциональны синусам противолежащих углов. Удачи!
4,4(64 оценок)
Открыть все ответы
Ответ:
aselduishenova
aselduishenova
16.11.2020
Суммы противоположных сторон этой трапеции равны. Поэтому средняя линия равна боковой стороне. Высота трапеции равна 2R, поэтому
(a + b)/2 = S/(2R);
это - и полусумма оснований, и боковая сторона.
Если теперь опустить перпендикуляр из вершины меньшего основания на большее, то она разобьет основание на отрезки, равные (a - b)/2 и (a + b)/2;
(говоря на правильном математическом жаргоне, проекция боковой стороны равнобедренной трапеции на основание равна (a - b)/2, это легко увидеть, если провести высоты из обеих вершин меньшего основания, между концами высот будет отрезок b, два других равны между собой, то есть (a - b)/2;)
Отсюда (a - b)/2 = √((S/2R)^2 - (2R)^2);
Складывая эти два равенства, легко найти a = S/(2R) + √((S/2R)^2 - (2R)^2);
ну, и b = S/(2R) - √((S/2R)^2 - (2R)^2);
4,6(2 оценок)
Ответ:
мотя105
мотя105
16.11.2020
Суммы противоположных сторон этой трапеции равны. Поэтому средняя линия равна боковой стороне. Высота трапеции равна 2R, поэтому
(a + b)/2 = S/(2R);
это - и полусумма оснований, и боковая сторона.
Если теперь опустить перпендикуляр из вершины меньшего основания на большее, то она разобьет основание на отрезки, равные (a - b)/2 и (a + b)/2;
(говоря на правильном математическом жаргоне, проекция боковой стороны равнобедренной трапеции на основание равна (a - b)/2, это легко увидеть, если провести высоты из обеих вершин меньшего основания, между концами высот будет отрезок b, два других равны между собой, то есть (a - b)/2;)
Отсюда (a - b)/2 = √((S/2R)^2 - (2R)^2);
Складывая эти два равенства, легко найти a = S/(2R) + √((S/2R)^2 - (2R)^2);
ну, и b = S/(2R) - √((S/2R)^2 - (2R)^2);
4,6(32 оценок)
Это интересно:
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ