М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
ABBADON369
ABBADON369
31.05.2023 08:05 •  Геометрия

Впрямоугольную трапецию площадью 432 вписана окружность радиуса 9. длина меньшего основания трапеции

👇
Ответ:
marusya11102345
marusya11102345
31.05.2023
А и b - основания, a>b, h и с - боковые стороны, h<c, R=9, S=432.
b=?

Высота трапеции равна диаметру окружности. h=2R=18.
Площадь трапеции S=h(a+b)/2 ⇒ (a+b)=2S/h=2·432/18=48.
B описанной трапеции h+с=a+b ⇒ с=a+b-c=48-18=30.
Опустим высоту на большее основание из тупого угла трапеции. Она разбивает это основание на два отрезка, один из которых равен меньшему основанию, а другой (х) образует прямоугольный треугольник вместе с наклонной боковой стороной и высотой.
х²=с²-h²=30²-18²=576,
x=24.
a=b+x=b+24.

a+b=48,
b+24+b=48,
2b=24,
b=12 - это ответ.
4,5(4 оценок)
Открыть все ответы
Ответ:
Pryanya11
Pryanya11
31.05.2023

Добавлю "дурацкое алгебраическое" решение.

Пусть боковая сторона треугольника AB=BC=c, тогда AC =2c cos 40° (для упрощения писанины обозначение градуса буду опускать),

AD=\frac{2 AB\cdot AC\cdot \cos\frac{40}{2}}{AB+AC}=c\frac{4\cos 40\cdot \cos 20}{1+2\cos 40}.

При этом BD=\frac{BC\cdot AB}{AB+AC}=\frac{c}{1+2\cos 40};\ AC-DD=2c\cos 40-\frac{c}{1+2\cos 40}=3\Rightarrow

c=\frac{3(1+2\cos 40)}{2\cos40 +4\cos^2 40-1};

AD=\frac{12\cos 40\cdot \cos 20}{2\cos 40+4\cos^240-1}=\frac{6(\cos 60+\cos 20)}{2\cos 40+2(1+\cos 80)-1}=\frac{3(1+2\cos 20)}{2(\cos 40+\cos 80)+1}=

=\frac{3(1+2\cos 20)}{4\cos 60\cdot \cos 20+1}=3.  

Мы воспользовались известными (как мне кажется) в школе формулами для длины биссектрисы через прилежащие стороны и угол, а также для длины отрезка стороны, на которую опущена биссектриса.

Возможно, приведет к успеху и другой путь - в этой задаче возникают углы в 60 (угол ADB) и 120 (соответственно угол ADC) градусов, поэтому можно написать хорошие тождества, скрепляющие элементы чертежа. При этом полезно провести биссектрису DF=BD угла ADC и достроить до ромба. Правда, с первого захода довести до ответе этот путь не удалось.  


В треугольнике АВС стороны АВ и ВС равны , угол В равен 100° , AD - биссектриса угла А , АС - BD = 3
4,4(20 оценок)
Ответ:
minickotik
minickotik
31.05.2023

Я прощения за рисунок - там много лишнего, но можно разглядеть △ABC ∠AВC = 100°; у меня была очередная "сумасшедшая идея" :).

На самом деле порядок решения такой - берется ∠HAC = 20° и в него встраивается ломанная из звеньев одинаковой длины (пока не важно, какой). Это построение хорошо известно. Я его повторю только для тех, кто не в курсе (автор задачи, я уверен, прекрасно знает, я прощения).

Первая точка V на AC, вторая U на AH. △AUV равнобедренный => ∠UVC = 40°; следующая вершина ломаной точка F на AC, △FUV равнобедренный => ∠UFV = ∠UVC = 40° => ∠HUF = 60°; следующее звено FD, и легко увидеть, что △DUF оказался равносторонним. Еще одно звено DO, и точно также находится ∠DFO = ∠DOF = 80°; ∠FDO = 20°;

Так как ∠DAO = 20°, то ∠ADO = 80°; => △ADO равнобедренный, AD = AO;

Кроме того △ADO ∼ △FDO;

Больше нельзя добавить звеньев по прежней схеме, но можно добавить еще одно звено вдоль AC (сама точка C на русунке). Пусть CD продлено за D до точки B так, что AB = BC. Так как ∠DOС = 100°, ∠AСD = 40°; ∠ABС = 100°; AD - биссектриса ∠BAС.

То есть получился треугольник из условия задачи.

А вот теперь, собственно, решение задачи.

Так как ∠DFA = ∠DBA = 100°, точки F и B симметричны относительно биссектрисы AD, => DF = BD; => CO = BD; а так как AO = AD, то AD = AC - BD = 3; это все.

То, что звенья ломаной брались произвольной (одинаковой, но произвольной) длины, ничего не меняет - можно было сразу взять их длиной 3, например.

4,6(87 оценок)
Новые ответы от MOGZ: Геометрия
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ