1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..)) По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника. Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.
2) Так как CED - равнобедренный, то ∠ECD = ∠EDC => ∠ECM = ∠MCD = ∠EDH = ∠HDC Тогда ΔHDC = ΔMCD по стороне и двум углам: (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC) Отсюда следует, что HC = MD.
В ΔСАН и ΔMAD: HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC => эти треугольники равны по стороне и двум углам
Треугольник с заданными сторонами имеет совершенно определённые углы, которые можно вычислить по теореме косинусов. Но можно обойтись и без этой теоремы. Угол в 97 градусов тупой, значит треугольник должен быть тупоугольным. Стоит доказать, что наш треугольник не такой и дело сделано, тем более, что нас не просили вычислить его углы. Наибольший угол в треугольнике лежит напротив наибольшей стороны - это 8 см. Теперь, по теореме Пифагора c²=a²+b²=5²+7²=25+49=74, с=√74≈8.6 см. Прямоугольный треугольник с катетами 5 и 7 см должен иметь гипотенузу в 8.6 см, а у нас сторона всего 8 см. Не хватает длины - не хватает градусов, значит наибольший угол этого треугольника - острый, то есть он меньше 97 градусов. Вот и всё!. ответ: не может.