Можно решать так: имеется трапеция, большее основание которой 25 см, меньшее основание 4 см, боковые стороны 13 см и 20 см. (верхний чертеж)
Проведем две высоты, которые отсекут от нижнего основания 4 см.
Начертим треугольник (чертеж внизу), где основание 25-4=21 см, стороны 13 см и 20 см и высота h. Найдем его площадь по формуле Герона
S=√(р(р-а)(р-в)(р-с)=√(27*6*14*7)=√15786=126 (см²)
Найдем h, которая и будет высотой данной трапеции
126=1\2 * 21 * h
10,5h=126; h=12 см.
ответ: 12 см.
Можно решать другим но будет длиннее.
x+x+x-3=36
получаем x=13 - АВ и ВС, тогда АС = 10
пусть АВ=ВС=х-3, тогда АС= х
х-3+х-3+х=36
х=14 - АС, ААВ=ВС=11