АВ-диаметр окружности, О-центр окружности. С -точка на окружности, СЕ-перпендикуляр на АВ, СЕ=24см. АЕ=а, ЕВ=с, с-а=14.
а+с -диаметр окружности, (а+с)/2-радиус окружности и ОС=ОА=радиус окруж.
Треугольник СЕО-прямоугольный , ОЕ=ОА-АЕ=((а+с)/2)-а=(а+с-2а)/2=(с-а)/2
По теореме Пифагора
ОЕ^2+СЕ^2=СО^2
((c-a)/2)^2+24^2=((c+a)/2)^2
c-a=14, значит с=14+а, подставим с в первое уравнение
((14+а-а)/2)^2+24^2=((14+а+а)/2)^2
7^2+576=(7+a)^2
49+14a+a^2=49+576
a^2+14a-576=0
дискрим Д=14^2+4*576=196+2304=2500
корень из Д=50
а1=(-14-50)/2=-32(не может быть отриц.)
а2=(-14+50)/2=18
с=14+18=32
радиус равен (с+а)/2=(18+32)/2=25
1. Фигура на плоскости, все точки которой обладают одним и тем же свойством, а ни одна из других точек плоскости этим свойством не обладает, называется геометрическим местом точек (г. м. т.) данного свойства на плоскости.
2. Биссектриса угла есть г. м. т., каждая из которых одинаково удалена от обеих сторон угла.
3. Серединный перпендикуляр— прямая, перпендикулярная данному отрезку и проходящая через его середину.
4. Перпендикуляр через середину отрезка есть г. м. т., каждая из которых одинаково удалена от концов отрезка.
равна 180°). AD=BD. <DAB=30° (треугольник ABD равнобедренный).
<DAC=60° (90°-30°).
<ADC=60°(смежный с <ADB).
DC=AD =AC=6 (треугольник ADC равносторонний). ВС=12.
По Пифагору АВ=√(ВС²-АС²). Или АВ=√(144-36)=6√3.
ответ: АВ=6√3.
2) <B=90°, <A=(180°-120°)/2=30° (сумма внутренних углов треугольника
равна 180°).<C=60° (сумма острых углов прямоугольного треугольника = 90°, 90°-30°=60°).
Треугольник ВСD равносторонний и ВС=6. ФС=12.
По Пифагору АВ=√(АС²-ВС²). Или АВ=√(144-36)=6√3.
ответ: АВ=6√3.
3) <C=90°. <B=(180°-120°)/2=30°. <A=60°(сумма острых углов
прямоугольного треугольника = 90°).
<DAB=30° (треугольник DAB равнобедренный).
<CAD=<A-<DAB=60°-30°=30°.
AD=12 (CD - катет против угла 30°).
BD=12 и ВС=18.
АС=√(АD²-СD²)=√(144-36)=6√3.
АВ=√(АС²+ВС²)=√(108+324)=12√3.
ответ: АВ=12√3.