, как диагонали равных квадратов, значит Δ
- равнобедренный, О - середина АС, значит
- медиана, биссектриса и высота, то есть
⊥
⊥
,
⊥
, значит
⊥
, и перпендикулярна любой прямой этой плоскости, в том числе
, значит ∠
,
- проекция
на плоскость АВС и
⊥
, значит
⊥
и ∠
Рассмотрим ΔАВЕ - прямоугольный, ∠ВАЕ=∠ВЕА=45° по свойству острых углов прямоугольного треугольника. Значит, ΔАВЕ - равнобедренный, АВ=ВЕ=5. Тогда ЕС=17-5=12. Найдем ЕД из ΔСДЕ по теореме Пифагора:
ДЕ=√(СЕ²+СД²)=√(144+25)=√169=13 (ед.)
ответ: 13.