Для решения применим теорему Фалеса: Если на одной из двух прямых отложить последовательно несколько отрезков и через их концы провести параллельные прямые, пересекающие вторую прямую, то они отсекут на второй прямой пропорциональные отрезки.
Чтобы без линейки с делениями разделить отрезок, длина которого не известна, нужно от одного из концов этого отрезка провести под углом к нему вс луч и на этом луче на равном расстоянии отметить нужное количество точек.
а) На вс луче отложим через равные промежутки 2+5 =7 точек. Затем через последнюю точку и конец заданного отрезка проведём прямую и через все точки ещё 6 прямых, параллельных ей. При этом заданный отрезок будет разделен на 7 равных частей. Отсчитаем 2 из получившихся отрезков. Остальная часть равна 5 отмеренным отрезкам, а исходный разделен в отношении 2:5
Можно на заданном отрезке откладывать не 7 отрезков, а провести всего 2 прямые - через седьмую и параллельно ей через вторую точку. Заданный отрезок будет разделён в нужном отношении.
б) и в) делим точно так же.
2. Угол А равен 180° - 30° - 90° (сумма всех углов треугольника равна 180°) = 60°.
3. В прямоугольном треугольнике напротив угла в 30° лежит катет, равный половине гипотенузы. Гипотенузой является сторона БС (на моем чертеже угол А = 90°, катет, который как бы горизонтальный - АС, "вертикальный" - АБ).
Пусть x - это сторона АС, тогда БС - это 2х.
4. В условии было дано, что СБ-АС = 10. Подставим значения. 2х-х=10. Х = 10. АС = 10, СБ = 20