В прямоугольном треугольнике высота, проведенная к гипотенузе, равняется 12 см и делит ее на отрезки в виднршенни 9:16. Вычислит площадь треугольнику.
РЕШЕНИЕ
высота h=12 см
отношение отрезков(проекций катетов) 9:16.
обозначим проекции катетов на гипотенузу a(c) = 9x b(c) = 16x
тогда для прямоугольного треугольника
a(c) / h = h / b(c)
h^2 = a(c) * b(c) = 9x*16x = 144x^2
h = 12x
x= h /12 = 12/ 12= 1
тогда
a(c) = 9*1=9 b(c) = 16x = 16*1 =16
гипотенуза c = a(c) + b(c) = 9 +16 =25
площадь S = 1/2*h*c = 1/2*12*12 =72 см2
ОТВЕТ 72 см2
В прямоугольном треугольнике высота, проведенная к гипотенузе, равняется 12 см и делит ее на отрезки в виднршенни 9:16. Вычислит площадь треугольнику.
РЕШЕНИЕ
высота h=12 см
отношение отрезков(проекций катетов) 9:16.
обозначим проекции катетов на гипотенузу a(c) = 9x b(c) = 16x
тогда для прямоугольного треугольника
a(c) / h = h / b(c)
h^2 = a(c) * b(c) = 9x*16x = 144x^2
h = 12x
x= h /12 = 12/ 12= 1
тогда
a(c) = 9*1=9 b(c) = 16x = 16*1 =16
гипотенуза c = a(c) + b(c) = 9 +16 =25
площадь S = 1/2*h*c = 1/2*12*12 =72 см2
ОТВЕТ 72 см2
Скласти рівняння прямої, яка проходить через точки А (4;–1) та В (–6;2).
Розв'язання:
Оскільки ані абсциси, ані ординати точок не рівні, то пряма АВ не паралельна ні вісі абсцис, ні вісі ординат. Це означає, що потрібно шукати рівняння прямої у вигляді y = kx + m.
За умовою координати точок задовольняють шукане рівняння, тобто
Розв'язуючи цю систему віднімемо від першого рівняння друге і отримаємо значення коефіцієнту k.
Підставляємо знайдений коефіцієнт k у перше рівняння й знаходимо m.
Нарешті можемо записати шукане рівняння у вигляді y = kx + m:або у вигляді ax + by + c = 0:
Відповідь: рівняння прямої має вигляд y = –0,3x + 0,2 або 3x + 10y – 2 = 0.
Однак, для складання рівняння прямої, що проходить через дві точки є простіший і, до того ж, цілком законний б.Для його виведення нам доведеться пригадати теорему про пропорційні відрізки, яка, як відомо, формулюється так:
Паралельні прямі, які перетинають сторони кута, відтинають від сторін кута пропорційні відрізки.
Це означає, що у випадку, зображеному на малюнку
Візьмемо тепер в прямокутній системі координат дві довільні точки А (x1;y1) і В (x2;y2), проведемо через них пряму, та позначимо на ній довільну точку С (x;y).
Відповідно до теореми про пропорційні відрізки
і , а значить
Все, маємо формулу, за до якої тепер легко написати рівняння прямої, що проходить через дві дані точки.
Розв'яжемо попередню задачу з використанням виведеної формули:
Маємо А (4;–1), В (–6;2). Нехай координати точки А будуть першими, а координати точки В – другими.
Використовуючи формулу записуємо:
За основною властивістю пропорції з виразу отримуємо:Розкриваємо дужки, зводимо подібні доданки:Відповідь: 3x + 10y – 2 = 0.